
Bintracker Manual

utz/irrlicht project

November 13, 2017

Contents

1 About 3
1.1 What is Bintracker? . 3
1.2 License . 3

2 Setup 4
2.1 General . 4

2.1.1 Windows . 4
2.1.2 Linux/*nix . 4
2.1.3 MacOS X . 5

2.2 Customization . 5

3 Introduction 9
3.1 General Concepts . 9
3.2 Differences with other Trackers 9

4 Keyboard Shortcuts 11
4.1 General Keys . 11
4.2 General Tab Keys . 12
4.3 Block Keys . 12
4.4 Sequence/Block List Keys . 14

5 Using Bintracker 15
5.1 The Main Menu . 15
5.2 Main Interface Overview . 18

5.2.1 The Menu Panel . 18
5.2.2 The Block Panel . 19
5.2.3 The List Panel . 19

1

5.2.4 The Message Panel . 20
5.3 Composing Music: A Walk-Through 20

5.3.1 Choosing a Sound Engine 20
5.3.2 Editing Global Song Settings 20
5.3.3 Editing Patterns . 21
5.3.4 Sequence Editing . 24
5.3.5 Editing Non-Pattern Blocks 25
5.3.6 Editing A Block List 26

6 Adding New Engines 27

7 Thanks and Greetings 29

2

1. About

1.1 What is Bintracker?

Bintracker is a cross-development music editor for low-level sound drivers,
and a visual front-end for the Music Data Abstraction Language (MDAL).
It is designed mainly with 1-bit music engines in mind, but is by no means
limited to those. Bintracker is easily extensible - additional sound drivers
can be added through a plug-in system, without the need for recompiling the
application itself. As long as the target platform is supported, Bintracker can
handle any sound routine supported by MDAL. In the future, Bintracker will
support a range of different target platforms. At the current stage however,
it supports only the original Sinclair ZX Spectrum and its beeper.

1.2 License

Bintracker and all its components are free, open source software. The bundle
is released under the ”Revised” (3-clause) BSD-License. This means you’re
basically free to use, modify, and redistribute this software both in binary as
well as source form, as long as you don’t pretend that I endorse what you’re
doing, or try to hold me responsible for any damage done. The full license
terms can be found in the docs/licenses folder.

Bintracker includes a distribution of the pugixml XML parser library, which is
available under MIT license terms. See the docs/licenses folder for further
details. Furthermore, Bintracker uses the Allegro5 library, which is available
under the terms of the zlib License.

3

https://utz82.github.io/MDAL/
https://pugixml.org/
http://liballeg.org/

2. Setup

2.1 General

To make best use of Bintracker, you may want to add the following files to
the resources/roms folder:

zxspectrum48.rom - The Sinclair ZX Spectrum 48K ROM.

These files are not distributed with Bintracker due to copyright restrictions.

2.1.1 Windows

No need to install anything, just unzip the bintracker package to a folder of
your choice.

2.1.2 Linux/*nix

On Linux/*nix machines, Bintracker can be build from source using either
GCC or Clang. In order to do so, you will first need to install a recent version
of the Allegro5 libraries (¿=5.2) as well as the according development headers.
Most major distributions have Allegro5 in their repositories. On Debian, you
can (su)do

apt-get install liballegro5-dev

which should install Allegro5 and all necessary addons. Then simply run
make to build Bintracker.

4

http://liballeg.org/download.html

2.1.3 MacOS X

In theory, it is possible to build Bintracker on OS X, however this is untested
and may require some manual tweaking. In any case, you will need Home-
brew, standard build tools, and Allegro5.

2.2 Customization

You may want to set bintracker as the default application for opening .mdal
files. This way, you can open your bintracker tunes by double-clicking on
them.

You can also tweak a number of Bintracker’s default settings by editing the
settings.ini file. Note that the INI parser is very basic, so Bintracker may
crash or simply refuse to start if certain INI settings are invalid.

The following parameters are available:

XRES

Set the horizontal resolution of the editor window in pixels. Minimum size
is 720.

YRES

Set the vertical resolution of the editor window in pixels. Minimum size is
480.

KBDLANG

Set the keyboard locale. Supported locales are EN (English), FR (French),
and DE (German).

5

https://brew.sh/
https://brew.sh/
http://liballeg.org/download.html

BGCOLOR

Set the background colour as 24-bit RGB value (ie. standard HTML colours).
Hex values must be prefixed with $.

SYSCOLOR

Set the system colour (used for borders, scrollbars, buttons, labels etc.) as
24-bit RGB value (ie. standard HTML colours). Hex values must be prefixed
with $.

ROWCOLOR

Set the colour of data rows as 24-bit RGB value (ie. standard HTML colours).
Hex values must be prefixed with $.

ROWHIGHLIGHTCOLOR

Set the colour of highlighted data rows as 24-bit RGB value (ie. standard
HTML colours). Hex values must be prefixed with $.

ROWACTIVECOLOR

Set the colour of active data rows as 24-bit RGB value (ie. standard HTML
colours). Hex values must be prefixed with $.

CURSORCOLOR

Set the colour of the cursor as 24-bit RGB value (ie. standard HTML
colours). Hex values must be prefixed with $.

6

SELECTIONCOLOR

Set the colour for selections as 24-bit RGB value (ie. standard HTML
colours). Hex values must be prefixed with $.

DEFAULTROWHIGHLIGHT

Set the distance between row highlights.

DEFAULTBLOCKLENGTH

Set the standard length for new blocks.

DEFAULTNUMBASE

Set the number base. This field is currently ignored, as decimal mode is not
fully implemented yet.

DEFAULTCONFIG

The default MDAL configuration to be loaded on startup.

CHUNKSIZE

The audio chunk size used by the sound emulation. A lower value means lower
latency. Increase this value if you are experiencing skippy/rough audio.

KEYREPEATDELAY

The delay before key repeat is activated, as number of video frames (1/22.5
seconds).

7

SIMPLEGFXBUFFER

Set this option to true if you are experiencing flickering graphics.

8

3. Introduction

3.1 General Concepts

Bintracker belongs to a class of music editors known as trackers. Character-
istic traits of trackers include:

• a minimalistic, number based interface

• keyboard-centric workflow

• vertical representation of time flow

In case you are completely new to using trackers, you may want to first
familiarize yourself with the jacks of the trade by reading the The Tracker’s
Handbook before continuing with this manual.

Quite likely you already know what a tracker is. In this case, you will find
that Bintracker is not much different from other trackers you may have used.
However, Bintracker does have a few quirks - read up on those in the next
section.

3.2 Differences with other Trackers

As Bintracker is primarily a front-end for the MDAL markup language, there
are some notable differences with other trackers such as Famitracker, Defle-
mask, or OpenMPT.

9

https://en.wikipedia.org/wiki/Tracker_%28music_software%29
http://resources.openmpt.org/tracker_handbook/handbook.htm
http://resources.openmpt.org/tracker_handbook/handbook.htm

Most existing trackers differentiate between patterns, instruments, and pos-
sibly various types of ornaments or effect tables. Bintracker however does
not make these distinctions. In MDAL, and consequently in Bintracker, ev-
erything is a block. Patterns are blocks. Effect tables are blocks. Volume
envelopes are blocks. Samples are blocks.

In practise though, this will have little to no impact on your workflow. Pat-
tern blocks still act like traditional patterns, and you’ll link them together in
a traditional sequence. Effect table blocks will act like effect tables, envelope
blocks will act like envelopes, and sample blocks will act like samples.

The reason for doing away with these traditional distinctions is that the sound
engines supported by MDAL widely differ in their capabilities. Some engines
only support plain patterns, without extraneous tables or instruments. Oth-
ers may make extensive use of tick-based envelopes or samples. Ultimately,
which types of blocks are available depends entirely on the engine you use.

Another common concept of other trackers that does not exist in Bintracker
is the notion of tracks, also known as channels. A channel, as presented in
”normal” trackers, will almost always consist of a note column, followed by
various columns for instrument, volume, and effect settings. Often, these
channels correspond to the hardware channels available on the tracker’s tar-
get sound chip.

Since bintracker is mainly dealing with 1-bit sound-routines, this concept
makes not a lot of sense here. In a 1-bit engine, several tone channels may
share a common effect setting, or may impact each other in some way. In
fact, the number of available tone channels itself may be flexible, and subject
to change depending on the effect settings.

Hence, bintracker uses independent columns. Each column corresponds to a
command. There are different flavours of commands, such as note commands,
parameters for specifying various sound settings, and references to other
blocks, linking instruments, samples, or effect tables. In addition to the
column commands, there may also be commands available that are not tied to
a column. Such commands may for example be used to specify a tune’s author
and title, or a global speed setting. Again, which channels are available as
well as their function depends on the engine in use.

10

4. Keyboard Shortcuts

4.1 General Keys

key function

F2 Show engine info

F5 Play from start
F6 Play from current position
F7 Play pattern
F8 Stop

Tab Toggle block/list
Ctrl+Tab Cycle through block tabs

Esc Abort action

Ctrl+Z Undo
Ctrl+Y Redo

Ctrl+O Open File...
Ctrl+S Save File
Ctrl+Shift+S Save File As...

Alt+1..6 set base octave to 1..6
Alt+7/8 decrement/increment base octave
Alt+Page Up/Down increment/decrement edit step (auto-inc)

11

4.2 General Tab Keys

key function

Up/Down Move cursor up/down
a-z, 0-9, Space enter data (context sensitive)
Enter complete text input
Backspace delete last char (text input only)

4.3 Block Keys

key function

arrow keys Move cursor
Page Up/Down Move cursor up/down 16 rows
Home/End Move cursor to first/last row
Alt+left/right show previous/next block
Enter reference columns: show block at cursor

text commands: complete input
Backspace text columns: delete last char

a-z, 0-9 enter notes/data (context sensitive)
1 note colums: rest note (if available)
k note colums: noise note (if available)
Space clear field
+ − ∗/&|ˆ set modifier (if available)
= remove modifier (if available)
. repeat previous value

Ins insert field
Del delete (cut) field
Alt+V, Alt+Ins Insert row

12

Alt+Del Delete (cut) row
Alt++ Add row (increment block length)
Alt+− Remove row (decrement block length)

Alt+R Rename block
Alt+X Expand block
Alt+Shift+X Shrink block

Ctrl+A Select all
Shift+arrow keys
Shift+Page Up/Down Select fields
Shift+Home/End

Ctrl+C Copy selection to clipboard
Ctrl+X Cut selection
Ctrl+Del Delete selection (cut and shift)
Ctrl+V Paste from clipboard (overwrite)
Ctrl+Shift+V Porous paste
Ctrl+Alt+V Inverse porous paste
Ctrl+P Insert (paste and shift)

Ctrl+F Fill selection/cursor-end from clipboard
Ctrl+Shift+F Porous fill

Ctrl+I Interpolate selection (linear)
Ctrl+Shift+I Interpolate selection (reciprocal)
Ctrl+Alt+I Interpolate selection (cubic)

Ctrl+R Reverse selection

Ctrl+U Transpose selection 1 semitone up
Ctrl+Shift+U Transpose 1 octave up
Ctrl+D Transpose 1 semitone down
Ctrl+Shift+D Transpose 1 octave down

13

4.4 Sequence/Block List Keys

key function

Up/Down Move cursor up/down

Alt++ Add new block/step
Del Delete step/block
Alt+C Clone block/step

Sequence only

PgUp/PgDn Move cursor up/down 16 rows
Home/End Move cursor to start/end

Ins, Alt+V Insert step

Ctrl+A Select all
Shift+up/down
Shift+Page Up/Down Select steps
Shift+Home/End

Ctrl+C Copy selection to clipboard
Ctrl+Del Delete selection (cut and shift)
Ctrl+V Paste from clipboard (overwrite)
Ctrl+P Insert (paste and shift)

14

5. Using Bintracker

5.1 The Main Menu

The main menu is where you will find... all the important stuff, of course.

• File

– New... - Loads a new blank MDAL module file for a sound engine
of your choice.

– Open... - Opens an existing MDAL module file.

– Save - Saves the current MDAL module file. Any unused blocks
will not be saved.

– Save As... - Saves a copy of the current MDAL module file with
a new name.

– Export... - Export the current MDAL module to a range of dif-
ferent formats. Available export formats depend on the module’s
target platform.

– Exit - Quits Bintracker. Unused blocks are permanently lost.

• Edit

– Undo - Reverts the last edit action. Undo is limited to around
100 steps.

– Redo - Reverts the last undo action.

– Select All - Select the entire block or pattern sequence, depending
on the cursor position.

15

– Copy - Copies the current selection.

– Cut - Cuts the current selection. Cutting will not shift the data
following the selection.

– Delete - Cut the current selection, and shift up the following
data.

– Insert - Insert the copied/cut/deleted selection from the clip-
board at the current cursor position, shifting the following data.

– Paste - Paste the copied/cut/deleted selection from the clipboard
at the current cursor position, overwriting the following data.

– Porous Paste - Merge the copied/cut/deleted selection from the
clipboard into the data following at the current cursor position,
keeping the current data intact.

– Inverse Porous Paste - Merge the copied/cut/deleted selection
from the clipboard into the data following at the current cursor
position, keeping the copied data intact.

– Interpolate...

∗ Linear - Interpolate the selected data, using a linear function.

∗ Cubic - Interpolate the selected data, using a cubic function.

∗ Reciprocal - Interpolate the selected data, using a reciprocal
function.

– Fill...

∗ Overwrite - Fill the current selection with data from the
clipboard. If no selection is made, fill the current column,
starting at the current cursor position.

∗ Porous - Fill gaps in the currently selected data with data
from the clipboard. If no selection is made, fill gaps in the
current column data, starting at the current cursor position.

– Transpose...

∗ +1 semitone - Transpose the currently selected note data
one semitone upwards.

16

∗ -1 semitone - Transpose the currently selected note data one
semitone downwards.

∗ +1 octave - Transpose the currently selected note data one
octave upwards.

∗ +1 octave - Transpose the currently selected note data one
octave upwards.

– Reverse - Reverse the current selection.

– Randomize - Fill the selection with random data.

• Play

– Play from Start - Play back the current module from the be-
ginning.

– Play from Current Position - Play back the current module
from the current cursor position.

– Play Pattern - Play and loop the current pattern.

– Stop - Stop playback.

• Help

– About - Show a little box with version info and some other stuff.

17

5.2 Main Interface Overview

5.2.1 The Menu Panel

The menu panel, located at the top of the editor window, replicates some
of the functions of the main menu for easy access with a single mouse click.
The following functions are available:

Create New File Open File

Save File Save File As...

Play from Start Play from Current Position

18

Play Pattern Stop

Undo Redo

Copy Cut...

Delete (Cut and Shift) Paste

Insert (Paste and Shift)

Furthermore, the menu panel displays the current base octave (BASE OCT)
and auto-increment step (AUTOINC) settings. You can change these settings
with the arrow buttons next to them. You can also set the base octave
directly by pressing Alt+0..6, or decrement/increment it with Alt+7/8.
The auto-increment step can be decremented/incremented by pressing Alt+
PageUp/PageDown.

5.2.2 The Block Panel

The block panel occupies the main portion of the editor window. It consists
of two or more tabs, depending on the sound engine used. The General tab
is used to display and edit the tune’s global settings and commands. The
remaining tabs are used to edit the tune’s patterns and other data blocks, if
any are used by the engine’s configuration. Information on using the block
panel can be found in the sections on Editing Global Song Settings, Editing
Patterns, and Editing Non-Pattern Blocks.

5.2.3 The List Panel

The list panel, located to the right of the block panel, is used in different
ways, depending on the active tab of the block panel. When the General
tab is active, the list tab will show various bits of information about the
current tune. When the Patterns tab is active, the list panel will display
the song sequence. When any other tab is active, the list panel will show

19

corresponding list of blocks. Information on using the list panel can be found
in the sections on Sequence Editing and Editing A Block List.

5.2.4 The Message Panel

The message panel, located at the bottom of the editor window, is used to
display tooltips and hints about keyboard shortcuts, as well as error messages.

5.3 Composing Music: A Walk-Through

The following sections give a brief overview over the Bintracker work flow.
After reading these, you should have enough knowledge to get started with
composing your own tunes in Bintracker.

5.3.1 Choosing a Sound Engine

Bintracker supports multiple sound engines, and what you see on screen
can vary considerably depending on which sound engine you chose. For
the purpose of this walk-through, we are going to use the PhaseSqueek en-
gine. (Note that documentation on the various engines supported by Bin-
tracker is not part of this manual. Engine documentation can be found in
the docs/engines folder, or by pressing F2.)

To get started, launch the Bintracker program. Then, click on the File menu
item and select New... → PhaseSqueek. This will create a new, empty
PhaseSqueek module.

5.3.2 Editing Global Song Settings

Before we dive into the really heavy stuff, let’s edit some global settings of our
tune. Activate the General tab by clicking on General just below the menu
panel, near the left edge. A list with three MDAL commands (AUTHOR,
TITLE, and GSPD) with editable fields next to them will appear. Use the

20

arrow up and arrow down keys to move the cursor, or simply click on the
field you wish to edit. To edit a field, simply start typing on your keyboard.

The AUTHOR and TITLE commands set the song author and title, respec-
tively. Note that only lowercase letters are allowed at the moment. Any
invalid characters will be rejected. To complete your input, hit Enter. To
cancel your input, hit Esc.

The GSPD command sets the global song speed. Note that by default,
Bintracker uses hexadecimal numbers, so possible values for this field range
from 00 to FF (255 in decimal). A higher value means lower speed. Currently,
GSPD is set to 10 (16 in hexadecimal). That’s quite slow, so let’s set it to
08 by moving the cursor to the GSPD field, then typing 08. Simple, right?
Ok, let’s move on to the pattern editor.

5.3.3 Editing Patterns

Patterns are the main building blocks of your tune. This is where you con-
struct your actual melodies and rhythms. The sheet music equivalent of
a pattern would be a phrase, except that patterns are usually longer than
phrases.

To open the pattern editor, click on the Patterns tab at the top of the block
panel, next to the General tab. A classic, good ol’ pattern view will appear.

At the top left corner of the block tab, the name of the pattern is shown,
sandwiched between two arrow buttons (these can be used to cycle through
patterns once you have a few more of them). Right now the current pattern
is called ”pattern00”. Click on the name to change it - let’s call it ”intro” for
now. Once you hit enter, the cursor will automatically return to the main
pattern data block.

On the left side, below the ROW label, the row numbers of the pattern
are shown. Next to the row label, you will find all the available MDAL
pattern commands, each with a column of editable fields below. There are a
few different types of MDAL commands, and the editor will act differently
depending on the command type. We will cover all the common types in this
tutorial. In fact, we’ve already covered text commands (AUTHOR, TITLE)

21

and plain data commands (GSPD) in the previous section. To find out what
each command does on a given engine, press F2.

The first command is SPD. This sets the speed for the current row, and the
ones that follow after it, until the command is set again. If you do not set
this command, the value from the GSPD command on the General tab will
be used. We’ve already set GSPD to a reasonable value, so there’s no need
to set the SPD command right now. If you did enter some value by accident,
you can simply clear it by pressing Space.

Move the cursor to the next column (labelled DRUM), either with the arrow
keys or by clicking on the desired field. The DRUM command triggers a click
drum. This command type uses an MDAL feature called substitution, which
means you don’t enter numbers here, but rather chose from a list of keywords.
Type any letter or number on your keyboard, and a list of available keywords
will be displayed below the field you are editing. In our case, the list contains
two items, kick and hhat. Start typing the name of the keyword you want
to use, eg. type k for a kick drum, or h for a hi-hat. As there are only two
items, typing k or h will complete the input. However, some commands use
more keywords, so you might need to type a few more characters before the
choice becomes conclusive. Note that if we would have pressed k or h at the
beginning, the field would have been set instantly, without displaying the
options list. You can also select keywords with the arrow keys, and confirm
the choice with Enter.

The next column is labelled GMIX. GMIX sets the general channel mixing
algorithm. It’s another substitution command. We’ll leave it alone for now.

The following column, labelled FX, sets the fx table to be used. It is a
so-called reference command, which means it refers to another block type,
in this case an FxTable. Reference commands work similar to substitution
commands, that means when you start typing, you will be displayed a list
of options. We haven’t created any fx tables yet, so let’s skip this command
for now.

The following column, labelled ”A”, sets the note for the first oscillator (in
other words, A is a note command). On note commands, your keyboard acts
like a piano keyboard. Key Y corresponds to note C, S corresponds to C#,
X corresponds to D, and so forth. This is repeated in the upper half of the
keyboard, eg. Q is C one octave up, 2 is C#, and so forth. To put in a

22

rest, press key 1. The base octave can be set in the menu panel, by clicking
the arrows next to the BASE OCT field. You can also set the base octave
directly by pressing Alt+0..6, or decrement/increment it with Alt+7/8.
Note that some engines may limit the range of available notes.

Feel free to enter a few notes before moving on to the next column, labelled
”B”. As you might have guessed, B sets the note for the second oscilla-
tor. Now, a special feature of the PhaseSqueek engine is that by default,
it combines two oscillators into one channel. That means A and B are not
independent from each other, but rather form one combined sound.

In effect, this also means that we probably don’t want to enter arbitrary
notes into column B. Rather, a smart move would be to duplicate the notes
in colum A, but with a little bit of detune. Here’s how to do that. First,
move the cursor back to column A. Now, hold down the Shift key and select
the notes you entered with the arrow up/down keys. When you’re done,
press Ctrl+C to copy the selection. Now move the cursor to column B and
press Ctrl+V to paste the current selection. Column A and B should now
contain the same data. If you’ve accidentally pasted at the wrong position,
you can move things down or up by pressing Ins or Del.

If all is good, it’s time to work on that detune. Move the cursor to the first
note in column B, and press +, followed by 1, followed by Enter. The field
will now display <notename>+0001. Congratulations, you’ve just used a
modifier for the first time. Repeat this for the other notes you may have
pasted into column B.

Note that not all engines support modifiers. Also, while Bintracker nor-
mally checks the validity of your input, this is not the case with
modifiers. It is entirely possible to crash an engine by feeding it invalid
data through modifiers.

Now it’s time to check the result. Press F7 to play the pattern, or click the
corresponding button in the menu panel. Pressing F8 stops playback. You
can continue editing while the player is running. However, the player is not
updated instantly. Rather, it will fetch new data once it has played the entire
pattern and loops back to the beginning.

The other pattern commands work in the same way as the ones we have
already covered. MIXAB sets the mixing algorithm (using substitution), DA
and DB change the duty cycle setting for osciallators A and B (plain 8-bit

23

data command like GSPD/SPD), SIDA and SIDB enable or disable the SID
duty sweep effect for osc A/B (substitution), ESA and ESB set the Earth
Shaker effect modifier for osc A/B (plain 8-bit data), and PAB sets the phase
offset between the two oscillators (16-bit plain data). The whole set is then
repeated for osciallators C and D, except that the ESx commands are replaced
with command NC, which enables or disables Noise mode for oscillator C.
Note that for noise mode, you should use a special note (frequency divider)
on column C. This ”noise” note is located on key k.

This covers most of the command types available in MDAL/Bintracker. One
additional command type not covered here will be explained in the section
on Editing Non-Pattern Blocks.

5.3.4 Sequence Editing

The sequence allows you to combine multiple patterns into a song, by speci-
fying the order in which the patterns should be played.

When the Patterns tab is active in the block panel, the sequence will be
displayed in the list panel. You can toggle between the block panel and the
list panel by pressing the Tab key, or simply click on the panel you want to
use.

When looking at the sequence, you will realize that it currently only holds
a single line, which reads 000@pattern00. 000 is the step number, or order
position, if you will. The @ is actually a small right-pointing arrow with an
L attached. It specifies the loop point, that is the point in the sequence that
the player will jump to once it has finished playing the tune. pattern00 is
the pattern that currently selected for this sequence step.

Let’s duplicate pattern00. We can do so by selecting sequence step 000 with
the cursor and pressing Ins, or by clicking the Insert button (). Now move
the cursor down to step 001, and press Alt+C, or click the Clone button
(). This creates a copy of the pattern on the current step. The new pattern
will receive some generic name (like ”blk0”), which you can change later on
the block panel. If you wish, you can now change some things in the new
pattern.

You may have noticed that by inserting a new sequence step, the sequence

24

loop point got shifted down to step 001. This is because inserting always
happens on the current cursor position (so in fact the new step got inserted
at position 000, and the old step moved down to step 001). To move the
loop point to another step, move the cursor to that step and press Alt+L,
or click the loop point button ().

Instead of cloning an existing pattern, you can also create an entirely new
one by pressing Alt++, or by clicking the Add Step button (). The new
pattern will be appended at the end of the sequence. To insert the pattern
at another sequence step, move to that step and type the first letter of the
pattern’s name. If your choice was unambiguous, the sequence step will be
set to the new pattern. Otherwise, a list of options will appear, and you
keep typing until only one option is left. Alternatively, you can select an
option with the arrow keys, and confirm the choice with Enter.(To cancel
this process, press Esc).

You can delete sequence steps by pressing Del, or by clicking the Delete Step
button (). Removed patterns will not be deleted immediately, but will be
lost eventually if they are not used at any other sequence step (see below).

Aside from inserting and creating new steps, you can also copy/paste/insert
multiple steps, much like in the pattern editor.

Important: Any patterns not used in the sequence will not be saved
in your module file, and will be lost when you exit Bintracker or
load another track.

5.3.5 Editing Non-Pattern Blocks

Editing non-pattern blocks works exactly like editing patterns, except that
any notes will not be played when you enter them.

PhaseSqueek uses one non-pattern block type called FxTables. In the pattern
editor, you can select which FxTable to use at a given point with the FX
command.

Clicking on the ”FxTable” tab in the block panel will show the only instance
of this block type that we have right now. It’s called ”fx0”, and it consists
of only a single row. This is the default block, used if you don’t specify
any parameter for the FX pattern command. You probably want to leave it

25

alone, and instead create a new block (see the following section on how to
create a new FxTable block).

PhaseSqueek’s FxTables use mostly the same commands as the patterns.
However, there are two commands that are not available for patterns: STOP
and JUMP. The engine info (press F2 to view it) will tell us that one of these
commands must be used at the end of each FxTable block. JUMP is a regular
reference command, much like the FX pattern command. STOP, on the other
hand, is a special command type we have not encountered yet: The auto
command. Auto commands do not take any arguments/parameters, they
can only be set. Pressing any alphanumeric key will set an auto command,
indicated by the word ”set” in the command field. Pressing Space clears an
auto command field, like any other command type.

5.3.6 Editing A Block List

When editing a non-pattern block, a list of blocks of that type will appear
in the list panel. Editing this block list is somewhat different from editing
the sequence. The main difference is that there are no steps to edit here, of
course. Consequently, you cannot insert items at arbitrary positions. There
is no copy/paste available either. You can only add new blocks (by pressing
Alt++, or by clicking the Add Block button), clone them (Alt+C or

), or delete them (Alt+Delete or (). Unlike deleting a sequence step,
deleting a block from the block list will immediately delete it.

26

6. Adding New Engines

You can add support for your own sound engines to Bintracker, provided
the target machine is supported. At the moment, only the ZX Spectrum
48K is supported. In order to add an engine to Bintracker, you will need to
write an MDAL configuration file. For information on how to write MDAL
configurations, refer to the MDAL wiki. The .mdal file must be placed in the
engines/config folder. Additionally, you must register the configuration in
engines/config/configlist. Furthermore, you must create a subfolder
in engines folder, with the exact same name as your MDAL configuration
file (without the .mdal extension). This folder must contain the following:

• The assembly source code of your engine. It must be named main.asm,
and must be self-contained (eg. must not include any other files, and
must include all the necessary definitions, equates, etc.).

• A compiled binary of your engine (without any music data) that loops
when the end of the sequence is reached. It must be named main.bin.

• A compiled binary of your engine (without any music data) that ex-
its when the end of the sequence is reached. It must be named
main no loop.bin.

• An equates.h header containing at least the following equates:

– breakpoint init - The start adress of your compiled engine.

– breakpoint exit - The exit point of your compiled non-looping
version of the engine.

– breakpoint reload - The adress executed immediately before
looping the sequence in the looping version of the engine.

27

https://github.com/utz82/MDAL/wiki

– loop point patch - The adress of the hard-coded pointer that is
loaded on looping the sequence, if your engine uses such a con-
struct.

– rest - The value of rests, if supported by your engine.

– noise - The seed for noise generation, if supported by your engine.

– Names for all the notes supported by your engine, and their re-
spective frequency dividers or table lookup values. Note names
must be given in lower-case letters. Sharp notes are denoted by
appending -is to the note name (German notation). Bintracker
does not support flats.

Equates must be specified with equ, hexadecimal numbers must be
prefixed with $.

28

7. Thanks and Greetings

Massive thanks and warm-hearted greetings go out to:

linda8bit for moral, emotional, and financial support

Shiru for his 1-bit engines, 1tracker, and his invaluable advice on asm and
beeper matters

Chris Cowley for Beepola, and for showing the middle finger to the WOS
clan

AtariTufty and Garvalf for testing and feedback, and for keeping the 1-bit
scene alive

Alone Coder and introspec for all the coding tricks

Simon Jonassen for forcing me on a trip to 6809 land every once in a while

Mister Beep for turning me into a 1-bit addict

puke7 for BattleOfTheBits.org

and last but not least, everybody still hacking away and creating art on home
computers and other obsolete hardware!

29

	About
	What is Bintracker?
	License

	Setup
	General
	Windows
	Linux/*nix
	MacOS X

	Customization

	Introduction
	General Concepts
	Differences with other Trackers

	Keyboard Shortcuts
	General Keys
	General Tab Keys
	Block Keys
	Sequence/Block List Keys

	Using Bintracker
	The Main Menu
	Main Interface Overview
	The Menu Panel
	The Block Panel
	The List Panel
	The Message Panel

	Composing Music: A Walk-Through
	Choosing a Sound Engine
	Editing Global Song Settings
	Editing Patterns
	Sequence Editing
	Editing Non-Pattern Blocks
	Editing A Block List

	Adding New Engines
	Thanks and Greetings

