SpecBAS Reference manual

The Editor
(this section is now out of date!)
The editor displays your current program. Upon start-up, you will be greeted by the SpecBAS “About” window – press any key to clear it and enter the editor proper.
The window that appears at the bottom of the screen is the “Direct Command” window. Anything you type in here will be acted upon when you press the RETURN key. Try typing CLS 4 followed by the RETURN key. The screen will turn green, and a window at the bottom of the screen will show “0 Ok, 0:1” – this is the error window and that particular error means that all went well. Press any key to clear it.
To show the current program listing, press RETURN without typing anything else. Press it again to hide the listing window. Pressing SHIFT-RETURN will hide all the editor windows and restore the current palette. A second press will restore the editor windows.
When a listing is showing, you can use the CTRL key together with UP and DOWN cursors to move the highlight (cyan colour) from line to line. You can also use the CTRL-PgUp and CTRL-PgDn keys to move a page (screen-full) at a time. This highlight indicates the line that will be edited. To edit a line, press the TAB key. To edit a specific line, type its number into the direct command window, and then press TAB. If you also supply a statement number, say 10:2, then the editor cursor will jump to the start of the statement. Specifying a label, say “@MyLabel” and pressing TAB will bring the declaration of that label into the direct command window.
When editing, you can use the LEFT, RIGHT, UP and DOWN keys to move around the line. Use SHIFT LEFT/RIGHT to move one word at a time. Use CTRL-HOME and CTRL-END To move to the very start and ends of a line. Editor Direct Command history can be accessed with SHIFT UP/DOWN, to recall previously issued direct commands.
Press RETURN to accept a line. If it is a direct command (starts with a keyword) then it will be executed immediately if there are no errors. If it starts with a line number, then it will be stored away for later, appearing in order on the listing window.
Press ESCAPE to clear the current line.
Finally, by pressing CTRL-SHIFT-Fn (Fn being a function key, F1 to F10) you can set a marker in the listing. To jump to that marker, press CTRL-Fn (the same function key you assigned it to).
Numbers in SpecBAS
Numbers in SpecBAS can be specified in a variety of ways. Decimal numbers are specified as-is, but SpecBAS can also handle a number of bases – binary, hexadecimal and even any arbitrary base you like (up to 36!).
10 LET a=%10101010
Specifies a binary number.
10 LET a=$FFFF
Specifies a hexadecimal number.
Arbitrary bases are specified with a “\” character which precedes the base itself –
10 LET a=A10QP\36
Will return the value of the number specified in base 36.
Arithmetic
SpecBAS allows the usual operators +,-,/,* and suchlike, and also supports inline assign-and-modify operators.
LET a+=1
Will increment a by 1. Similarly, -=, *=, /= can also be used along with:
%= for Modulus
^= for raise-to-power
&= for bitwise AND
|= for bitwise OR
~= for bitwise XOR.
These can also be included inside expressions, for example:
PRINT a+=1
Which will increment a by 1, and the PRINT the value stored in a.
Working with variables
LET Variable[,var...] = expr[,var[,var...] = expr]
LET assigns a value (the result of ‘expr’ above) to a variable. Variables can have names of any length – and can contain spaces and numbers, though cannot start with a number. String variables are denoted by a terminating ‘$’ character. Many LET statements can be concatenated together by separating them with a comma. LET is optional, though the remaining syntax is mandatory.
LIST VAR [array()]
With no parameters specified, this command will produce a list of all declared variables, and their contents. If you specify an array variable with empty brackets appended, such as “a$()” then the contents of that array will be listed.
DIM Variable([numexpr[,numexpr...]]) [LEN numexpr] [BASE numexpr]
DIM Strarray$(SPLIT str-expr$, [NOT] separator$)
DIM creates an array of numbers or of strings. Unlike Sinclair BASIC, string arrays are not fixed width. You can create an array of strings of fixed width by specifying the LEN command followed by the desired length. Fixed-width strings cannot be made larger or smaller.
There is no limit to the number of dimensions.
Adding the BASE directive sets the value that the indices start from – for example
DIM a(10) BASE 0
Will initialise an array in “a” which counts from 0 to 9, as opposed to the default behaviour of 1 to 10.
Instead of a number of dimensions, you can specify, for a simple one-dimensional array, the elements you want to be added, like so:
DIM a=1,2,3,4,5,6
Which will create the array a(6) which will contain the elements specified. You can also specify BASE and LEN parameters with an automatically-filled array.
You can omit the array dimensions to create a dynamic array, which expands with use. For example,
DIM a(): LET a(10,10)=25: LET a(-3,4500,32)=50
Will create a dynamic array which holds just two values – those you specified. They can be accessed as normal. These arrays are very useful when used with the associative-array system mentioned below. They are also faster to access than regular arrays.
Specifying the second type of declaration, using the SPLIT keyword, creates a string array from a supplied string separated into elements. The first parameter is the string to use, the second dictates which character(s) will be used to mark the points that it will split. By default, the strings will contain the separator, unless the NOT keyword is specified.
For Example,
DIM a$(SPLIT “one|two|three”, NOT “|”) will result in the array a$ containing three strings – “one”, “two” and “three”.
Multiple arrays can be created by separating them with a comma -
DIM a(2,4),b(4,5),c()
UNDIM array() or array$()

Removes an array from memory. This can take some time with large arrays, so use
sparingly and never inside a time-critical loop.
JOIN$(strarray$(), separator$)
Function – Returns a single string composed of all the elements in the supplied string array separated by the second parameter. Basically the opposite of the SPLIT form of DIM.
SORT [KEY] array() [INVERSE]
SORT [KEY] array$() [INVERSE]

Sorts the array specified. The array must be one-dimensional, and will be sorted with
lowest values first in the list. If INVERSE is specified then the sorting will be inverted
with highest values first in the list. Specifying the KEY keyword indicates that the
array should be sorted based on its associative key values instead of the array’s
element’s contents.
FILTER [ERASE] array(),{m|[Range...]}
FILTER [ERASE] array$,m$

Removes or isolates items in a one-dimensional non-dynamic array. FILTER works
differently on numeric and string arrays – for strings, you must specify the m$
parameter as a regular expression – any matches will be actioned. See the
documentation for the MATCH function for information on how a regular expression
is created. Numeric arrays have two methods of matching items – either a single
value (in which case any numbers in the array that have that value will be actioned)
or a range – or number of ranges – can be used.The action used depends on
whether or not the ERASE flag is specified. If omitted, then only items that match the
criteria will be kept, and all others will be removed. If ERASEis specified, then those
matches will be removed. This will change the size of the array, and the new size can
be determined using the UBOUND function.
ARSIZE array()
ARSIZE array$()

Function – returns the size of the array. That is, the number of elements in total
UBOUND (array(),index)
LBOUND (array(),index)
Function – Returns the upper or lower bounds of the index specified for the array. The index must exist, and the lower bound is functionally the BASE specified when the array was created – by default, this will be 1.
KEY array(index[, index...]) = name$
Assigns a “key” to the array variable element specified. You can later access that element with that key:
KEY a$(10)=”test”
Will assign the key “test” to the tenth element of a$. Furthermore...
LET a$(“test”)=”Hello!”
Shows you how to use it. You can change the key at any time, and they are saved by the SAVE and LOAD DATA commands.
INC numvar[,amount[,start TO end]]
INC will increment the numeric variable specified by the amount specified. If not specified, then the amount is assumed to be 1. Also a range can be optionally added to constrain the variable to a range of values, which wrap when overflowed.
DEC numvar[,amount[,start TO end]]

DEC will decrement, using the same syntax as INC.
SWAP <numvar, numvar|strvar, strvar>

SWAP will exchange two variables. Cannot be used on array variables.
CLEAR
Clears all variables. Also clears the GO SUB stack and any ON assignments, and clears the screen. Can also be used to clear the error status with CLEAR ERROR, see ON for more details.
CLEAR array()[,value]
CLEAR array$()[,string$]

Clears an array – by filling it with the optionally supplied value. If the value is not
supplied, zero or empty strings will be used.
READ [LINE] variable[, [LINE] variable...]
Interprets an expression held in a DATA statement, and assigns the result to the variable specified. If the LINE qualifier is present, then the variable must be a string variable, and any DATA that is read will be converted to a string, regardless of its original type.
DATA item1[,Item2...ItemN]
Each item following a DATA statement is an expression which evaluates to either string or numeric type. These are read by the READ command in sequence until no more can be found. If the current DATA statement ends, then READ will continue with the next DATA statement in the program.
RESTORE <linenumber|label>
Sets the location of the next DATA statement to be READ from. If no DATA statement exists at this location in the program, RESTORE searches ahead for the next one, if one exists.
ITEM (function)
The ITEM function returns information about the next DATA item to be read. It returns
0 if there is no more data, 1 if the item is numeric and 2 if the item is a string.
SAVE filename$ DATA var/array()
Use this command to save a variable or array to disk for later retrieval. Use empty braces () to specify an array.
LOAD filename$ DATA [var]
Use this command to load a previously saved variable or array. If no variable/array name is specified, then the original name will be used. If it is specified, and it matches the variable type (ie, “a$” will not be be valid for numeric variables or arrays) then the loaded variable will assume that name. If the variable already exists in memory, it will be deleted and the new one will take its place. You do not need to specify the empty braces () for an array – arrays, once saved, cannot be loaded back as simple variables and will always load back as arrays.
SEARCH(array|array$() FOR value|string$)
SEARCH(array|array$() NEXT)
[Function] Searches an array for a value. The array must be one-dimensional, either numeric or string array. SEARCH FOR should be used first to initialise the search, then SEARCH NEXT can be used to find subsequent values or strings. If none are found, then -1 is returned.
MAT
The MAT command is used to manipulate matrices and perform matrix maths upon them. The format is
MAT dest()=expression
Where the destination is a suitable array, which is usually one that’s two dimensional, and possibly square.
MAT dest()=srca()+srcb() – adds the arrays srca to srcb and puts the result in dest(). Srca() and srcb() must be identical in size and dimension.
MAT dest()=srca()-srcb() – Matrix subtraction. Srcb is subtracted from srca and the result placed in dest. Again, srca and srcb must be identical in size and dimension.
MAT dest()=srca()*srcb() – Matrix multiplication. They must be identical in opposite dimensions – if Srca is (2,3) in size, then srcb must be (3,n). The dest() matrix array will be sized 2xn.
MAT dest()=src()*x – Matrix scalar multiplication – each value in src() is multiplied by x, and the result placed in dest().
MAT dest()=ZER – creates the zero matrix. Fills the destination matrix (which must exist) with zeros. In practice, fills any numeric array with zeros.
MAT dest()=CON [n] – fills the destination matrix (or numeric array) with 1, unless n is specified in which case it fills it with n.
MAT dest()=IDN [n] – creates an identity matrix in the destination. If n is not specified, it creates it in the destination as it is. The destination in this case must be a square matrix of any size. If n is specified then the destination is created as an nxn identity matrix.
MAT dest()=INV src() – Inverts the source matrix and places the result in the destination matrix. The source must be a square matrix.
MAT dest()=TRN src() – Transposes the source matrix and places the result in the destination. In practice, this swaps rows for columns and converts an nxm matrix into an mxn matrix.
MAT dest()=INTERP src1(),src2(),Amount – interpolates by a certain amount (0 to 1) from src1 to src2 – if amount is zero, then src1 will be the result, if 1 then src2 will be the result – if 0.5 then values in the destination will be exactly halfway between values from the two source arrays.
DET src() – function - returns the determinant of the specified matrix.
CONST varname,value
CONST varname$,string$
Sets a constant value. This value will be used to replace all instances of the variable name from that point on throughout the program before the program is run. This results in these variables being faster to access, but has the drawback that their values cannot be changed after they have been declared. They cannot also be passed to a procedure or function as a REF parameter. As with LET, multiple constants can be declared separated by commas.
String Functions
There should perhaps be a note in here about inline string characters which are specified using the ‘#’ character – ie, #32 which would equal a space character. They can be used in place of strings, and can be prepended and appended to other strings (and other inline strings characters) without a concatenation (‘+’ character). Ie:

LET a$=”Hello”#32”there!”
Would result in a string which contains the words “Hello there!” – note that the #32 has inserted a space.
Also worthy of note is string multiplication - “Hello”*2 will return a the string “HelloHello”.
VAL$ strexpr
VAL strexpr
Returns the result of the expression stored in the string expression parameter. In the case of VAL, the expression must return a numeric result. VAL$ can process either, and always returns the result as a string.
IVAL strexpr

Returns a simple value stored in a string. No evaluation will be performed. Garbage
at the start of the string will be ignored, and the value extracted from that point on,
until further grabage is found or the string ends.
STR$ numexpr

Converts a numerical expression into a string, after evaluating it.
CHR$ numexpr
DCHR$ numexpr
QCHR$ numexpr
FCHR$ numexpr
Returns the character that corresponds to the result of the numerical expression. For example, CHR$ 32 returns the “ “ (space) character, or to look at it another way, a string with the first character (or byte) set to 32. The DCHR$ and QCHR$ functions return the numerical expression as 2-byte (for numbers of 0-0xFFFF) or 4-byte (for numbers 0-0xFFFFFFFF) strings respectively. The latter is especially useful for constructing WINDOW PUT-able graphic strings. FCHR$ takes a floating point value and returns a string of eight bytes which represent that number.
LEFT$(strexpr, count)
Returns the number of characters from the left of the string as a string. For example, LEFT$(“hello”,4) returns “hell”.
RIGHT$(strexpr, count)

As for LEFT$, but for the rightmost characters.
MID$(strexpr,start,count)
Returns a substring of the string expression, from the given start and count parameters. For example, MID$(“Scunthorpe”,2,4) cannot be printed.
UP$(strexpr)

Converts the string expression to uppercase characters and returns it.
LOW$(strexpr)

Converts the string expression to lowercase characters.
REP$(strexpr, count)
Returns a string that is comprised of the string expression parameter repeated count times. A more “orangey” manual would likely use the example REP$(“hip! ”,2)+” hooray!”.
HEX$ numexpr

Returns the number specified as a string of hexadecimal digits.
BIN$ numexpr

Like HEX$, but returns a string of 1s and 0s, representing a binary sequence.
TRIM$ strexpr
Returns the string supplied, but with all whitespace (characters <= “ “) removed from the start and end of the string.
LTRIM$ strexpr

Returns the string,but with any whitespace at the start stripped off.
RTRIM$ strexpr

As for LEFT$, but removes whitespace from the end of the string.
UDG$ <numexpr|char>
Returns a single-character UDG string. When the parameter is numerical, the string returned is the the character corresponding with the number, such as “A” for 65, but with bit 7 set (65 + 128). If the parameter is a string expression, then the result is again a string, but contains the referenced as a character.
LEN strexpr

Returns the number of characters in the string.
CODE strexpr
DCODE strexpr
QCODE strexpr
FCODE strexpr
CODE returns the ASCII code of the first character in the string parameter. For example, “1” would be 49. In a nutshell, the value of the first character as a byte is returned. DCODE and QCODE perform the same job, but return the value of 2-byte and 4-byte strings (or numbers expressed as two and four bytes). FCODE works with 8-byte strings, which can hold a floating-point value.
POS(substr, strexpr[,start])
Searches the string expression for the first occurrence of the substring and returns the position it occupies, or zero if not found. A starting position can be specified if desired.
LPAD$(n$,m$,c)
RPAD$(n$,m$,c)
Returns a string with padding to the left or right. n$ is the source string, which you want to add padding to. m$ is the padding itself (usually a space, or a “0” in the case of a binary number represented as a string) and c is the number of times to insert or append the padding.
INSERT$ (n$,m$,pos)

Returns the string n$ with m$ inserted at position pos.
REPLACE$(n$,[EXP] m$,p$)

Returns the string formed by replacing all occurrences of the string m$ in string n$
with the string p$.If EXP is specified before the second parameter, then it (m$) is
treated as a regular expression.
ITEM$ (n$,m$[,s$])
Returns an item from a list. By default, the list is separated by the “|” character. The string is broken down by the separator and item m is returned. For example, if n$ is “one|two|three|four” and m is 3, then the result would be “three”. Optionally you can specify a separator in s$.
n|n$ IN [list|ranges]
IN tests the value (n or n$ above) against a list of values or ranges and returns true (1) if it’s present in that list. The list can be a set of strings or values separated by commas, or ranges. A range is depicted by a minimum value, followed by TO and a subsequent maximum value, ie [1 TO 10] which would test that the value lies in the range of 1 to 10. Strings can also be compared, ie [“0” TO “9”]. The minimum or maximum value in a range may be omitted – [1 TO] would test that the value is greater than 1, and [TO 199] would test that it is less than 199. An array can also be specified, such as a$(), to be used as a range. More than one range can be listed, separated by commas as for the values shown above.
MATCH (regexp$,source$)
This function searches the source string for any matches to the text supplied in regexp$. However, it doesn’t use a simple search – the regexp$ text argument is a regular expression. The engine used is a reasonably complete POSIX-ERE implementation, and is composed of characters that control what can match and what cannot.
Each character is parsed, and if a match is made at the current search position, then the next character in the regular expression is considered. If it fails to match a character then the source position is advanced to the next character in the source string and the matching process starts over again. For this reason, complex regular expressions on long strings can take some time to process.
Here is a list of the characters supported:
.
Match any character
*
Match any number (or none) of the preceding item
+
Match at least one of the preceding item
?
Match none, or once only
[]
creates a set of matches that must match at least one
[-[]]
inserts a list of subtractions into a set of matches
[^]
creates a set of matches that must not match
|
separates optional regexes
()
Creates a sub-expression
{m}
Repeats the previous item m times
{m,}
Repeats the previous item at least m times
{,n}
Match optionally no more than n times
{m,n}
Repeats the previous item at least m and not more than n times
$
Matches the end of the string
^
Matches the start of the string
\
Escape a character
\n
Recalls a sub-expression's match, local to the current regex or sub-expression
\xFF
Matches the character represented by the Hexadecimal number given.
A good resource for information about regular expressions, which in itself is the subject of an entire manual, can be found at:
http://www.regular-expressions.info/
http://en.wikipedia.org/wiki/Regular_expression
USING$(format$,source$|value)
This function changes the source string according to rules present in the formatting string. It is most useful for printing numbers in currency formats or scoreboards with leading zeros. Like the MATCH function, the first argument is composed of characters that tell SpecBAS what to do with your text:

specify a digit
.
specify the place that a decimal point should be
*x
specify a character to either precede or follow the digits
,
insert a thousands separator every three digits
$
insert a $ currency unit before the digits
£
insert a £ currency unit before the digits
\x
insert a literal character
+
insert the sign of the value ahead of the digits
-
insert the sign of the value ahead of the digits only if the value is negative
!
insert the first character of the supplied string
&
insert all of the supplied string
[nn]
insert the first nn characters of the supplied string
The second argument can be either a string or a number. For example, to create a string from a number with leading zeros (up to 4 of them):
PRINT USING$(“*0####”,myvalue)
And to print money(!):
PRINT USING$(“£,&”,123456)
Will show “£123,456”. This is because when a number is passed to USING$, it is automatically converted to a string.
If any values won’t fit into the number of digits in the format string, then those digits will be replaced by “*” characters.
KEY$ array(n,m...)

Returns the key associated with the specified array element. You can also specify a
key instead of an index, but that would be a bit pointless.
Adding some Structure
Structures are a nice way to store many items of information in one place – such as coordinates (maybe two values together) or a street address (which might be several strings). Because they’re all stored in one place, they can be manipulated individually and then maybe saved to disk, to be reloaded later, like a database. Structures are assigned to string variables – as they are, as their name suggests, simply strings of bytes then they can hold more than just simple text. Values are constructed of bytes (8 of them, as a matter of fact) and strings can obviously be stored in strings…
Structures are created using the DEF STRUCT command –
DEF STRUCT name(value1, value2…)
Which is to say, if you wanted a structure that stores coordinates, you might define it as
DEF STRUCT coord(x,y)
Which tells SpecBAS that you want to create a structure named “coord” and will hold two values. Now you need to assign that structure to a string variable so you can use it. Use the following:
LET a$=STRUCT coord
And SpecBAS will set this up for you. Inquisitive users may notice that PRINT LEN a$ returns “16” – which, given that each value takes up 8 bytes, indicates how they are stored. Variables that are assigned to structures can still be used as string variables and manipulated like any others – just be aware that if you do mess around with them, you may damage the information stored within.
In order to use the values, you reference them with a “.” between the variable name and the value, like so:
LET a$.x=100
Just like any other numeric variable. String values can be stored, and are declared either as fixed-width or variable-width. To declare a variable-width string value, use
DEF STRUCT mystuct(str$, str2$)
Which will set up the structure to hold two strings. To declare a fixed-width string, use
DEF STRUCT mystruct(str$[length])
Which will force all string operations on that value to always contain length characters – with procrustean assignment being used to trim to that length. Extra bytes at the end of the string will always be replaced with spaces to pad out to the length specified.
Structures can also be assigned to arrays of strings like so:
DIM a$(20) STRUCT mystruct
Which will create an array of 20 strings, each of which are assigned a structure. To use those strings, you can reference them just like string variables with
LET a$(5).str$=”Hello!”
Default values can be assigned when declaring the structure – when a variable is assigned that structure, the initial values contained within will be set accordingly like so:
DEF STRUCT coord(x=100,y=150)
And thereafter, both x and y will be set to 100 and 150 when a string variable is assigned that structure. To set values in one go when assigning, use
LET a$=STRUCT coord(x=75,y=30)
Which will tell SpecBAS that you would like the values 75 and 30 to be assigned to the x and y members immediately. This also takes effect with the array form:
DIM a$(20)=STRUCT mystruct(str$=”Ta-da!”)
Whereupon all members of the array will get the same value for the str$ member.
You can get a list of all declared structures, with their members and any default values, but typing LIST STRUCT at the editor. You can add a variable to that command, such as
LIST STRUCT a$
Which will list the structure associated with that variable, or you can list just one structure with “LIST STRUCT structname”.
Finally, you can remove a structure with “STRUCT ERASE structname”.
One note that should be made is that any string variable or string array that is saved with structures assigned will be saved with that information, and that of the structure(s) assigned intact. When re-loaded later, any structures needed will be recreated. If a structure of the same name as that stored with the variable or array already exists, it will be erased and re-created. This has the side-effect of removing structure assignments from existing variables that may already use that structure, unless the original structure is identical to the new one.
Maths
RANDOMIZE [numexpr]
Sets the random seed, used by the RND function. If a numeric expression is specified, then the result is used as the seed – this enables you to use a repeatable sequence of random numbers which is useful in procedural work.
DEGREES
Sets the angle types used by the trigonometric functions to degrees. The default is Radians.
RADIANS
As for DEGREES, sets angle measurements to Radians. To convert radians to degrees, use the formula ‘deg=rad*180/PI’.
Maths Functions
DEGTORAD numexpr
Converts the number supplied from degrees to radians. Effectively executes “num*PI/180”, but much faster than the equivalent calculation in BASIC can be performed.
RADTODEG numexpr
As for DEGTORAD, but for the opposite conversion from radians into degrees. Uses the calculation “num*180/PI”.
RND
Takes no parameters, and returns a random number where 0 < RND < 1. To get a random number from a range, try RND * Limit, where limit is the highest number you want to get – ie, for a dice roll, try 1+(RND*6).
SIN numexpr
COS numexpr
TAN numexpr
ASN numexpr
ACS numexpr
ATN numexpr
Trigonometric functions. ASN, ACS and ATN are the inverse of their normal counterparts, ie, ArcSIN, ArcCOS and ArcTAN. All take either degrees or radians as parameters, depending on the angle mode set with either DEGREES or RADIANS.
LN numexpr

Returns the natural logarithm of the numerical expression.
EXP numexpr

Returns the exponent of the expression.
SQR numexpr

Returns the square root of the expression.
SGN numexpr
Returns the sign of the expression, either 0,-1 or 1, if the expression evaluates to zero, a negative number or a positive number respectively.
ABS numexpr
Returns the absolute value of the expression. This will effectively convert a negative number into a positive, and leave a positive number alone.
NOT numexpr
A logical operator – converts a TRUE number into a FALSE (0) number, and a FALSE number into a TRUE number (1).
numexpr OR numexpr
Returns TRUE (1) if either of the numerical expressions evaluate to TRUE (non-zero). This is a logical OR, if you require a bitwise OR then use | to operate on.
numexpr AND numexpr
strexpr AND numexpr
Returns, for two numeric paramters, TRUE (1) if both are TRUE (or non-zero), or FALSE (0) if either are FALSE (0). For the string expression as the first parameter, the result is the empty string (“”) if the numerical expression is FALSE (0), but if TRUE (non-zero), the result is the first string parameter.
As with OR these are logical operators – for a bitwise AND, use &.
numexpr MOD numexpr
Returns the modulus, or whole remainder, of the first numerical expression divided by the second. For example, 20 MOD 15 returns 5.
numexpr XOR numexpr
Performs a bitwise “Exclusive-Or” on the first number with the second. This has the effect of reversing the bits of the first number where the corresponding bits of the second number are set. For example, 255 XOR 255 is 0. 255 XOR 127 is 128 – ie, as bits 0 to 6 are set in 127, then all those bits in the 255 are unset, leaving bit 7 (128) set.
numexpr SHL numexpr
Shifts the bits of the first number to the left by the second. This has the effect of multiplying by two to the power of the second number.
numexpr SHR numexpr
As for SHL, but shifts to the right, which has the effect of dividing by 2 for each bit shifted.
(numexpr)!
Calculates the factorial of the numerical expression. Has a high priority, so brackets are needed if an expression is to be factored rather than a number.
INT numexpr

Rounds the numerical expression towards negative infinity. ie, INT 1.5 is 1, and INT -
1.5 is -2.
TRUNC numexpr

As for INT, rounds towards zero, and does the same job as INT.
FLOOR numexpr
Returns the highest integer less than or equal to the numerical expression. For example, FLOOR -2.8 returns 3, and FLOOR 2.8 returns 2.
CEIL numexpr
Rounds upwards to the lowest integer greater than or equal to the numerical expression. For example, CEIL -2.8 returns 2, and CEIL 2.8 returns 3.
ROUND(numexpr, digits)
Rounds to a power of ten. For example, ROUND(1234567,3) returns 1235000 and ROUND(1.234,-2) returns 1.23.
FRAC numexpr
Returns the fractional part of the numerical expression – that is, the part that is below the decimal point. For example, FRAC 12.345 returns 0.345.
MAX(numexpr,numexpr)

Returns the larger of the two values.
MIN(numexpr, numexpr)

Returns the smaller of the two values.
ODD numexpr
Returns TRUE (1) if the numerical expression evaluates to an odd number, or FALSE (0) if it’s even.
EVEN numexpr
Returns TRUE (1) if the numerical expression evaluates to an even number, or FALSE (0) if it’s odd.
POWER(base,exponent)

Raises base to the power of exponent. The same as the ^ operator.
POWERTWO n

Returns n squared. Faster than using n^2.
LOGTWO n
Returns the opposite of POWERTWO – for example, if n is 128, returns 7. Useful for bitwise calculations.
WORDSWAP n
BYTESWAP n
NYBBLESWAP n
Swaps component parts of values. WORDSWAP swaps the two words (two-byte values) in a 32bit value, BYTESWAP swaps the bytes in a 16bit value and NYBBLESWAP swaps the two 4bit values in a byte.
LOWORD
HIWORD
LOBYTE
HIBYTE
Returns the component of either a 32bit number (if using WORD type) or a 16bit number.
POLAR (dx,dy)
Returns the angle (in degrees or radians depending on mode) of the point from the origin at 0,0.
POLARDIST (dx,dy)
Returns the distance using pythagoras’ theorem of the point at dx,dy from the origin at 0,0.
CLAMP (n, min TO max)
Forces a value, n, into the range of min to max. If n falls outside this range it is set to the minimum or maximum value accordingly.
INRANGE (n, min TO max)

Returns true if min<=n<=max, false if not.
BIT (n,m)

Returns the state of bit m in value n – 1 or 0.
BTSET (n,m)
BTCLR (n,m)
Returns the value n with bit m either set or cleared. For example, setting bit 5 on a value of zero will return 32. Bits are in the range 0 to 31.
BINV (n,m)
BREV (n,m)

INVerts or REVerses m lower-order bits in value n.
PYTH (n,m)

Returns the pythagorean calculation of sqrt(n*n+m*m).
BASE$(value,base)
Returns the value specified in the base specified as a string. Specifying 2 for the base will return binary, specifying 16 will return hex. All letters of the alphabet are used, so up to base 36 is supported.
ADD, SUB, MUL, DIV
These are operators the same as the usual +,-,/,* operators, but work solely on integers. Any floats used will be converted to integers after the operation.
LCM (numexpr, numexpr)

Calculates the lowest common multiple of the two arguments.
GCD (numexpr, numexpr)

Calculates the greatest common divisor of the two arguments.
BIN binary-number

Returns the decimal equivalent of the binary number.
HEX hexadecimal number

Returns the decimal equivalent of the hexadecimal number.
DECIMAL (value$,base)
Returns the decimal equivalent of an arbitrary base (maximum of base 36) number. For example,
DECIMAL(“A10QP”,36)
Returns 1684377.
Flow control
LABEL @name-str
Defines a label for use with any command that requires a line number to jump to, such as GO TO and GO SUB. Whereas supplying a line number for these commands will work just fine, using a label allows you to specify a statement within a line to jump to.
Labels are defined with the “@” character preceding them, and are referenced as such throughout the program.
RUN [linenum|@label]
Causes execution of the program to begin at the specified line number or label if present, or the beginning of the program if not. Clears the screen, all variables, ON commands and the GO SUB stack before commencing execution.
STOP

Halts program execution.
CONTINUE

Continues execution at the next statement after the program halted.
IF numexpr THEN statement [ELSE statement] [ENDIF]
Tests the numexpr and if TRUE (greater than zero), executes the statement after THEN. If not, then the statement after ELSE is executed if it exists. IF..THEN..ELSE commands can be nested – if a child-condition doesn’t need an ELSE, but the parent IF does, then ELSE ELSE is permitted. For example:
IF a=1 THEN print “A is 1”: IF b=2 THEN print “B is 2” ELSE ELSE print “A is not 1”.
Finally, ENDIF will signify the end of an IF ... THEN construct – if a condition is met, then an ELSE will cause execution to resume after the ENDIF. If the condition is not met, then any code after ELSE will be executed, otherwise execution will continue after the ENDIF. This allows you to insert many IF ... THEN statements in the same line.
Note: As with the original Dartmouth BASIC specification, a single numeric expression can be used after THEN to cause a GO TO to that line number.
IIF(condition, true-val, false-val)
IIF$(condition, true-str$, false-str$)
IIF and IIF$ are actually functions, which can be thought of as in-line IF statements. They evaluate the condition specified, and if found to be >0 (ie, TRUE) then the second argument is evaluated and returned. Otherwise, the third value is returned. IIF$ is identical to IIF, but returns strings.
FOR numvar = numexpr TO numexpr [STEP numexpr]

Initialises the numeric variable to the result of the first numexpr, and then continues program execution. Information (the second numeric expression and the STEP numeric expression if present) are stored in the variable.
NEXT numvar
Assuming that the referenced numeric variable has been initialised previously with FOR, it is incremented (or decremented if a negative STEP value was specified) and tested against the TO expression – if the limit has been reached, then program execution continues on the next line, otherwise the statement after the FOR command is executed.
FOR EACH <numvar|strvar> IN array()
Like the FOR .. NEXT loop, this will also loop, but in a different manner – it will iterate through the entire array specified, and place the value of the current array element into the variable specified after EACH. Use NEXT to advance to the next element. You must specify the correct variable name that you used above in order for NEXT to do its job. In this way, you can work on every element of an array as a named variable in your code.
FOR EACH <numvar|strvar> IN [range, range...]
Very like the previous command, this variant of FOR EACH allows you to specify a range of values to iterate through rather than an array. Ranges can be a single value or a pair of values separated by the TO command:
FOR EACH n IN [1,2,3,10 TO 20]
Would give n the sequence 1,2,3,10,11,12,13 and so on up to 20. You can also optionally supply a STEP value, which works on the ranges as it would a simple FOR loop. For example, FOR EACH n IN [1 TO 10 STEP 2]
Strings can also be specified. Single values separated by commas, and ranges such as:
FOR EACH n$ IN [“a”, “b”, “c”, “0” TO “9” STEP 2]
Will give n$ the sequence “a”, “b”, “c”, “0”, “2”, “4”, “6”, “8”. The STEP Value must be a whole integer, but may be negative. Non-integers will be rounded down. Single string values such as “a”, “b”, “c” above may be any length, but for ranged strings (the “0” TO “9” above) only the first character will be used.
GO TO <numexpr|label>

Re-directs program execution to the line number or label specified.
GO SUB <numexpr|label>
Like GO TO, program execution jumps to the line or label specified, but the current line and statement number is added to the GO SUB stack. This can be used to return to the next statement after the GO SUB later.
RETURN
If a line/statement location has been pushed onto the GO SUB stack, it is popped off and a jump is made to that position in the program.
DO [[WHILE] numexpr]
DO marks the start of a block of code which will repeat when LOOP is encountered. You can optionally specify a numeric expression following a WHILE command, which if evaluated TRUE, will cause the block to execute. If FALSE, then program execution continues after the matching LOOP command. DO ... LOOP blocks can be nested. If a numeric expression is supplied without WHILE then the DO … LOOP structure acts like a FOR … NEXT loop without a control variable and will loop a set number of times.
LOOP [UNTIL numexpr]
Matches with a preceding DO command, and causes program execution to loop back to that command. If the optional UNTIL condition is specified, then looping is only performed if it evaluates to TRUE.
EXIT
Exits out of a DO ... LOOP block early, resuming program execution at the next statement after the next LOOP command.
CASE expr [ALL]
WHEN expr
WHEN IN [ranges...]
OTHERWISE expr
END CASE
Use a CASE structure when you have many tests to perform on a particular variable or expression, like so:
10 CASE a$
20 WHEN “a” : PRINT “a$ is ‘a’”
20 WHEN “b” : PRINT “a$ is ‘b’”
30 OTHERWISE : PRINT “a$ is some other value”
40 END CASE
Basically, when the CASE is encountered, the expression’s result is stored (in this case the contents of the variable a$). When subsequent WHEN clauses are encountered, one of two things can happen – if the CASE has already been solved by a previous WHEN clause, execution will jump to the statement after END CASE, otherwise execution will continue with the statement after the WHEN. OTHERWISE is used to catch values that don’t match any of the WHEN clauses.
WHEN can also be followed by IN to check the expression against a range of values, such as:
WHEN IN [0 TO 9, 10, 11, 12]
Which should hopefully be self-explanatory! As for other ranges used by the IN operator, you can also test against ranges of characters – [“A” TO “Z”] will test against all capital letters.
Note that lines between WHEN clauses (and after the OTHERWISE clause) will only be executed if the preceding WHEN is found true (or OTHERWISE is encountered), otherwise they will be skipped. The exception is any lines after the initial CASE but before the first WHEN, which will be executed regardless.
Any expression can follow CASE, it need not be a variable – you could test, say, TRUE (or 1) against a range of other variables in WHEN clauses. If you want more than one WHEN clause to match (you might be testing against a known value with many variables in WHEN clauses, for example), then you should specify ALL after the CASE expression, which indicates that even if one WHEN clause matches the CASE expression, subsequent clauses will be evaluated. The rules for OTHERWISE do not change, however – only if no matches are found in WHEN clauses will the OTHERWISE statements be executed.
ON numexpr [EVERY numexpr] statement
ON ERROR statement
ON MOUSEMOVE statement
ON MOUSEDOWN statement
ON MOUSEUP statement
ON KEYDOWN statement
ON WHEELUP statement
ON WHEELDOWN statement
ON KEYUP statement
ON COLLIDE statement
ON ERROR OFF
ON EVERY OFF
ON MENU SHOW statement
ON MENU HIDE statement
ON MENUITEM statement
ON MENU SHOW OFF
ON MENU HIDE OFF
ON MENUITEM OFF
Use ON to specify a scheduled event. ON ERROR allows you to branch to your own error handling routines – In practice, a GOSUB is made to your handler code, and a RETURN is issued when it completes that line. Be aware that if you GO TO another line in your handler, the stack will be unbalanced unless you issue a RETURN yourself – there is no way for SpecBAS to remember where a jump came from in that case.
MOUSEDOWN, MOUSEUP, MOUSEMOVE events are triggered when a mousebutton is pressed or released, or the mouse moves respectively. Similarly, KEYDOWN and KEYUP are triggered when the user presses a key. The WHEELUP and WHEELDOWN events are triggered when the user rolls the mouse wheel (if present) up or down. ON COLLIDE will be triggered if a sprite with collision detection encounters non-PAPER pixels whilst being drawn. MENU events are triggered by the menu system – see the chapter on menus for more details.
ON numexpr EVERY will evaluate the numeric expression when the second number of frames has elapsed. The numeric expression is optional, if you want this event to run every frame. If EVERY is omitted, then the numeric expression must be present, will be evaluated after every statement, and could potentially slow down your code drastically.
All these behaviours can be cancelled and deleted from memory by using the OFF keyword, as shown above.
EXECUTE strexpr
Executes a string of BASIC commands as if entered from a direct command. This is useful for code that needs to be modified at runtime, or for strings of Turtle Graphics commands for creating structured drawings. The TOKEN$ function can be used on the expression to speed up execution, as untokenised BASIC will be tokenised before it is run. Tokenising with the TOKEN$ function will skip this step. Labels can be specified and jumped to within the command string, and you can branch out to the main program with GO SUB. Although GO TO can be used, it is not recommended – the current statement is saved onto the GOSUB stack, and a jump out of the command with GO TO will leave this stack untouched, using memory.
TOKEN$ strexpr (function)
This function will error-check and “tokenise” (a sort of compilation operation) a string into a form suitable for execution in either the EXECUTE command or the VAL and VAL$ functions. It is not necessary to tokenise a string for these commands, but if a string is to be executed repeatedly, it can save considerable time if you do.
DEF PROC name[([REF] var1[,var2...])] ... END PROC
Defines a procedure. A procedure is a stub of code that can be called later to be run, much like a subroutine used by the GO SUB command. The difference between a procedure and a subroutine is that the procedure can have values passed to it in the form of variables. DEF PROC must be followed, after some time, by END PROC. When a DEF PROC statement is encountered by the interpreter, execution jumps to the statement directly after the corresponding END PROC. Procedures can be nested one inside another, but this has no effect on execution – a procedure inside another procedure is simply skipped when the parent procedure is called.
Procedures do not have to be initialised with DEF PROC at runtime – it is sufficient that they exist somewhere inside the program. SpecBAS maintains a list of procedures which is updated before your program is run, so you can store your procedures out of the way at the end of the program should you wish to.
The parameters specified are used just like normal variables. They are local to the procedure, and are discarded when END PROC is executed at the end of the procedure. If a global variable (that is, a variable declared outside of any procedure) has the same name as the parameter, then using that name will indicate the parameter and not the global variable. Other global variables can be used inside procedures. Any variable declared inside a procedure is local by default, and will be destroyed when the procedure ends. To create a global variable, use the GLOBAL command. If a procedure calls another procedure, then the parameters and local variables of the parent procedure are visible to the child procedure. Bear this in mind if you’re using a recursive procedure! Use the LOCAL command to create a new variable with the same name as a parent procedure’s variable (or a global variable) which has its own value.
An example of a procedure might be:
10 DEF PROC pythagoras(opposite, adjacent)
20 PRINT SQR((opposite*opposite)+(adjacent * adjacent))
30 END PROC
Which would be called using the following code:
PROC pythagoras(10,20)
Which would display the number 22.2306797749979 on the screen.
You can supply parameters by reference rather than passing their values – this will have the effect of using that variable rather than the parameter variable, and any changes made to that variable will be permanent. To do this, use the REF command when declaring the parameter list, like so:
DEF PROC myproc(REF a,b)
When using that procedure, you must pass a variable in place of “a”, like so:
PROC myproc(numvar,2)
Which will pass the variable itself rather than it’s contents. When working with the parameter variable “a” inside the procedure, you will in reality be working on the variable specified, in this case “numvar”. This is a neat way of getting data out of a procedure, or writing a procedure that will operate on a variable’s contents. If your procedure is set up to do so, you can pass the REF command inside the PROC command, like so:
PROC myproc(REF a,2)
Which will force the procedure to work on that variable instead of its value. Assuming of course that your procedure has been written to change that parameter’s value, it will work just as if the definition had specified a REF command.
LOCAL variable[=value][,…]
When executed inside a procedure, LOCAL creates a variable (or a list of variables) that is visible to the procedure, but which will be removed on exit from that procedure. The variable will be visible (like procedure parameters) to any procedures called during procedure execution. Variables created this way are initialised to either 0 or an empty string.
Declaring a LOCAL variable outside of a procedure will create a global variable.
Example:
LOCAL a=2,b,c$=”Hello”
Will create three variables, a (value 2), b (value 0, as no value was specified), and c$ (which will have the string “Hello” assigned to it). Creating a local variable will “mask” any variables local to a parent procedure which can come in quite handy for recursive functions and procedures.
GLOBAL variable[=value][,...]
This works almost identically to LOCAL but creates global variables that exist outside of the current procedure, and are not destroyed when the current procedure ends.
END PROC/EXIT PROC
This command terminates a declared procedure. When executed, it causes all local variables and parameters created for that procedure to be removed from the variable list, and execution resume at the statement after the PROC command that called it.
END PROC must be used to terminate the procedure’s structure in the listing; EXIT PROC can be used anywhere in the procedure, any number of times.
PROC name[(parameters)]
Calls a procedure declared elsewhere in the program. Variables are created and added to the variable list and the parameters are assigned to those variables. The return statement is stacked on the GO SUB stack, and execution resumes at the first statement directly after the DEF PROC statement for that procedure.
The PROCID and PROCID$ functions can be used with PROC and CALL – they return the index of the procedure specified, ie PROCID(myproc) will return a value that can be called using PROC PROCID(n;param1,param2…), which is useful for calling procedures based on a value calculated previously. The function PROCID$ must be used where a procedure returns a string value and is CALLed, or the CALL function will return a numeric value instead of a string. Functionally, both PROCID and PROCID$ are identical – their names just inform the CALL function what to expect on return from the procedure.
DEF FN name[(var1[,var2...])] = Expression
Functions are similar to procedures in their syntax form, but execute quite differently. As with procedures, parameters are specified (if desired) and then used inside an expression which is evaluated when the function FN is used. An example might be:
DEF FN pythagoras(opp, adj) = SQR((opp*opp)+(adj*adj))
The two parameters would be used as variables local to the function, and are removed from the variable list after evaluation. As with procedures, global variables can be used inside functions. You cannot reference variables in a DEF FN declaration; all parameters passed are values.
FN can be nested inside other DEF FN commands.
Unlike Procedures, functions must be declared by executing a DEF FN before use. This only needs to be done once – specbas maintains a list of functions which it refers to at runtime.
FN name[(parameters)] (function)
FN calls a previously defined function, and returns its result.
CALL name[(parameters)] (function)
The CALL function acts identically to the PROC command, but has one subtle difference – you are able to return a value from the procedure. On entry, the parameter list is set up, but depending on the name of the procedure, a new variable is also added for you to use. If the procedure name is a numeric variable type (like say, “myproc”) then a numeric variable, result, is available to you. If it’s a string variable type (as in “myproc$”) then a string variable result$ is available. On exit of the procedure, the contents of that variable are returned for use in your expression.
For example,
LET a=CALL myproc(1,2)*100
Will execute the myproc procedure, and then multiply the contents of the result variable by one hundred before storing that result in the numeric variable a. The PROCID and PROCID$ functions can be used as with the PROC command to call a procedure by its index value rather than its name.
PUSH linenumber[,statementnumber]
Adds the specified line number (and statement number if it is specified) to the GO SUB stack. Any RETURN executed will now jump to the location specified. You can query the next location on the stack with two functions – POPLINE and POPST, which return the line number and statement number of the next location to be RETURNed to. POPLINE will remove the item from the stack, while POPST will not. Alternatively, you can use the command:
POP numvar[,numvar]
Which will fill the variables supplied with line and statement number of the topmost stacked location respectively. Any instances of these commands which do not specify the statement number will assume statement 1, the first statement in a line.
INPUT and input functions
The INPUT command is used to get strings and numbers from the user. In its most simplest form, the command
INPUT a
Will halt program execution and flash a cursor similar to the editor cursor at the bottom left of the screen. The user can type in any valid numerical expression (such as 1+1 or the name of a variable, or just a simple number) and the text entered will be evaluated. Likewise, if the command specifies a$ instead of a, then any string can be entered – but this will not be evaluated, as it makes no sense to do so. You can list several INPUT items, all separated by the same print-separators as those used in PRINT, hence the command
INPUT a$;b$;c
Will ask the user for two strings and a number in sequence. You can insert a prompt by adding a string before the variable – INPUT “What is your name? “;a$ which will display at the bottom of the screen before the flashing cursor.
There are various command parameters you can use with INPUT, which can be inserted as with the strings and variables above.
FORMAT will specify a simple mask for the input. The mask parameter is a string, and represents the characters that the user may input in each position in the final string –
INPUT FORMAT “(####) ######”;a$
Will prompt the user for a UK phone-number. The string will be automatically filled with the two bracket characters, and the user will be able to type only numbers (represented by the # characters). The brackets are literals and represent characters that must be in the final string and are non-editable by the user. Alternatives to the # mark are:
A – Allows only alphabetical characters, and converts any inputted to uppercase.
A – Allows only alphabetical characters and converts any inputted to lowercase.
< – Allows any character, but any alphabeticals will be converted to lowercase.
> – Allows any character, and any alphabeticals will be converted to uppercase.
& – Allows any alphabetical character
? – Allows any alpha-numeric character
* – Allows any character.
Any other characters will be interpreted as literals as with the brackets in the example above. To use one of the above list as a literal, precede it in the string with a “\” character.
You can move the INPUT prompt to any place on the screen with the AT and MOVE parameters, which are used identically to the PRINT command’s versions. The colour of the cursor will automatically be changed to match the nearest colours in the colour palette to blue and white; you can change this behaviour by using the CURSOR parameter followed by foreground colour and background colour, separated by a comma. You can specify the colour of the text itself by inserting INK, PAPER and SCALE commands, again as with the PRINT command.
Finally, for numeric variable INPUTs, you can specify an error return value – if the string entered raises an error when evaluated, the value specified after the ERROR parameter will be returned.
MOUSE SHOW
MOUSE HIDE
These two commands hide or show the mouse pointer in specbas.
MOUSE GRAPHIC gfx$|BankID|DEFAULT [POINT x,y]
Sets a particular graphic (either as a graphic-string or a graphic bank) as the current mouse pointer. This graphic can be any size. Specifying DEFAULT sets the pointer back to the pointer used when SpecBAS is first started.
You can optionally specify a “hotspot” – the point within the graphic that the mouse pointer’s position lies – using the POINT parameter. For instance, creating a 15x15 pixel-size graphic and setting the hotspot to 7,7 will mean that the centre of that graphic will rest on the pixel the mouse is pointing at.
SETNUB nub-id,mode

Pandora ONLY – Sets the specified nub (1 for left nub, 2 for the right nub) to a
particular mode – see Appendix B for constants you can use. 0 specifies mouse
mode, 1 specifies joystick mode, 2 specifies mouse wheel (scroll) mode, 3 specifies
mouse buttons mode. In mode 3, pushing the nub left will left click, right will right-
click, up will double click the left mouse button.
INPUT functions
INKEY$
Returns, taking into account the shift keys, the last key to be pressed on the keyboard as a single character. Returns an empty string if no keys are pressed.
KEYST numexpr
Returns the status of the key whose scancode is represented by the numerical expression. Returns TRUE (1) if pressed, and FALSE (0) if not.
MOUSEx
MOUSEy

Returns the current mouse coordinates in the SpecBAS window or screen.
MOUSEdx
MOUSEdy
Returns the number of pixels the mouse has moved since the last mouse movement. Useful in ON MOUSEMOVE statements.
MOUSEBTN
Returns a number built from the state of the mouse buttons – Starting with 0, add 1 if the left button is pressed, 2 if the right button is pressed and 4 if the middle button is pressed.
MOUSEWHEEL
Returns the virtual “position” of the mouse wheel. This value is initialised to 0 when a program is run, or a CLEAR command is executed. It is incremented by one when the mouse wheel is rolled down, and decremented by 1 when it is rolled up. Thus, it will be common for the value returned to be less than zero.
NUBMODE n

Pandora ONLY - Returns the status of the specified nub (left = 1, right = 2), a value
in the range 0 to 3:

0: Mouse mode, 1: Stick mode, 2: Mouse wheel mode, 3: Mouse buttons mode.
NUBX n

Returns the position of the nub’s x-axis, in the range -32767 to +32767. If the nub is
not configured to run in stick mode, this function always returns 0.
NUBY n

Returns the specified nub’s y-axis values.
MENUBOX(title$,item1$,item2$,...itemN$)
MENUBOX(title$,items$())
Displays a menu, centred on the screen in 128k Spectrum style. Use the mouse or cursor keys to select an item. The function will return the item selected or -1 if ESC was pressed. The title will be displayed at the top of the menu in white-on-black. The list of items to display inside the menu can either be a comma-separated list of strings or a one-dimensional string array which contains the items.
Magical Menus
SpecBAS provides another method of gathering user input – Menus. The menu appears as a bar of white with items to select written across the top of the screen. Hovering the mouse over an item causes it to highlight, and if that item has a submenu associated with it then that will drop down from the item. Once a menu has been defined and activated, pressing the right mouse button will cause it to appear, and releasing the right button will hide it again.
If the user releases the right mouse button and leaves the mouse pointer inside a highlighted item, then that item will be selected and the menu/item combination can be determined with a couple of functions. Items in a menu are numbered from 1 up to the number of items present.
ON MENU SHOW, ON MENU HIDE and ON MENUITEM events are generated when the menu is opened, closed and and item highlighted respectively.
MENU NEW numvar, item1$, item2$, item3$....

Creates a new menu. The ID of the menu will be stored in the numeric
variable supplied as the first parameter and the items then follow as text
string expressions. The text expressions can also contain embedded ink and
paper command bytes, followed by a 32bit (4 byte) colour description. If the
text expression evaluates to a single minus (“-”) symbol then the item will be
displayed as a separator break in the menu.
MENU ADD id,item$

Adds an item to the end of a menu’s item list. It will show up as the furthest-
right or bottom item depending on if the menu is a Main Menu (bar at the top
of the screen) or Sub Menu (attached to another menu’s item).
MENU INSERT id,item$,position

Inserts a menu item into the middle of the menu specified with the ID
parameter. If the position is past the end of the menu then the item will just be
attached to the end. The position starts at the first menu item, item 1.
MENU DELETE id,position

Removes a menu item from the menu specified.
MENU ADD MENU id,position,submenu-id

Adds a submenu to an item. When the item is highlighted by the mouse
pointer, the submenu will open automatically. Items with a submenu attached
cannot be selected as a menu item. The submenu must have already been
created with the MENU NEW command.
MENU DELETE MENU id, position

Removes a submenu from the menu and item specified. This does not delete
the submenu altogether – it can then be attached to another item in a different
menu if necessary.
MENU ERASE id [ALL]

Completely deletes a menu from the system. Specifying ALL also deletes any
submenus associated with this menu.
MENU FONT id,font-id [SCALE sx,sy] [ALL]

Changes the font used in a particular menu. The font bank must exist, and
causes all items in the menu to use the new font. Scaling can be specified
with the SCALE parameter. Specifying ALL causes all submenus attached to
the specified menu to use the new font.
MENU ATTR id,position,attributes

Changes a menu item’s attributes. This is a bitwise combination of the
following values:

1
This item can be “ticked” and the state of the “tick” is changed when

the item is selected.

2
This item is ticked.

4
This item is enabled – disabled items are drawn in a different colour

and cannot be selected.

8
This item is visible. Invisible items do not show in the menu until they

are made visible again.

Hence, to make an item ticked (but not toggle-able), enabled and visible then
combine 2+4+8 (14).
MENU id

Activates the menu specified. This menu will be the “main menu”, and will
show as a bar at the top of the screen with its items displayed as a horizontal
row. Submenus will dangle from the items in this menu.
MENU HIDE id

Closes the main menu (and all submenus) if it’s open.
ON MENU SHOW <statement>

This event triggers when the main menu opens, and executes the supplied
statement.
ON MENU HIDE <statement>

This event triggers when the user releases the right mouse button (or clicks
the left mouse button with the menu open). This is used to determine what
option the user has selected with the functions LASTM and LASTMI.
ON MENUITEM <statement>

When the user moves the mouse into the area that an item occupies, this
event is triggered. It can be used to give realtime feedback on which item the
user is pointing at, and should not be used to determine item selection status.
Menu Functions

There are a few functions that can be used to determine the status of menus
and their items. These should be used in conjunction with the events above.
MIATTR(id,position)

Returns the attributes (as discussed above) of the selected menu’s item at
the position given. As always, items start at position 1 and count up.
LASTM

Returns the ID number of the last menu whose item has been highlighted or
selected. If the user selected no menu items (the mouse pointer was outside
of any menu items) then LASTM returns -1.
LASTMI

Returns the position of the item highlighted or selected by the user. If no item
was selected then LASTMI returns 0.
Working with Memory Banks and files
Banks are blocks of memory that can hold a number of datatypes, and the BANK command manipulates them all.
Note that all banks (except protected banks, see later) are erased on RUN and CLEAR.
BANK NEW numvar[,size]
Use BANK NEW to create an empty bank ready to put your data in. You can optionally specify a size, but this is not necessary as banks can shrink and grow as you see fit, and automatically expand as you write to them with a STREAM. The numeric variable is necessary to hold the new ID number of the created bank, which you will use to reference the bank in later operations. This ID number will be chosen for you (except when using LOAD BANK – see later).
BANK SIZE id,size
BANK COPY srcID TO destID
BANK COPY srcID,start,Length TO destID,offset
Resize banks with the SIZE command, and copy one bank to another with the COPY command. The second form of the COPY command allows you to copy only a portion of one bank to another. If the portion copied overruns the end of the destination bank then the destination bank is extended to fit.
BANK ERASE id
BANK ERASE ALL
Finally, you can erase a bank with the ERASE command. This operation will permanently delete any information the bank is holding. Specifying ALL will remove all banks that are unprotected.
BANK PROTECT id
BANK UNPROTECT id
When a RUN or CLEAR command is executed, all banks are cleared with the exception of any banks that have protection. You can use the BANK PROTECT command to protect a bank, and remove protection with the BANK UNPROTECT command. Beware that unprotecting special banks, such as the screen or default font, may crash SpecBAS.
LIST BANK [id]
This will either list all the banks currently in memory (if you supply no parameter) or will list detailed information about the specified bank.
LOAD strexpr BANK <id|NEW numvar>
Loads the file specified in the string expression to a memory bank. If the ID number is specified, the bank will be overwritten (if it exists) and created with that ID number if not. If no ID number is specified, one will be chosen for you. Specifying NEW followed by a numerical variable will create a new bank for your data and return the bank ID number in the variable.
SAVE strexpr BANK id
Saves a bank specified by the id number to a file. Any bank can be saved, regardless of how it was created – whether as a FONT bank, a SCREEN bank or whatever.
POKE id,offset,byteval
DPOKE id,offset,wordval
QPOKE id,offset,longwordval
FPOKE id, offsey, floatval
Sets a byte in a memory bank’s data section at the offset specified to the value specified. The DPOKE, QPOKE and FPOKE versions behave identically, but set two, four and eight bytes respectively. Offset must be in range of the bank’s size, or an error occurs.
POKE$ id,offset,string
Writes the specified string of bytes to the bank specified, at the offset specified. This is a very quick method of writing lots of bytes to a bank.
STREAM NEW numvar,<Bankid|filename>
Streams allow fast reading and writing of memory banks and files. Create a stream with STREAM NEW and access that stream using the value returned in the numeric variable. Specifying a numeric expression will attach that stream to a bank, otherwise a string expression will attach it to a file. If the file does not exist, it will be created only when the stream is written to.
STREAM READ id,strvar,count
STREAM WRITE id,strexpr
STREAM SEEK id,offset
Use STREAM READ to read a set number of bytes from the memory bank or file into the specified string variable. Use STREAM WRITE to write the contents of a string expression to the memory bank or file. You can set the position within the file or memory bank using STREAM SEEK, but specifying a position that is out of the range of the size of the bank or file will result in the position being set to offset 0 (if negative) or the end of the stream if larger than the stream size.
STREAM CLOSE id
Finally, STREAM CLOSE will close the stream, and end file access if it’s attached to a file.
Fun with the Filesystem – Packages and more
The filesystem allows you to work with files. You might have noticed that you cannot browse your entire hard drive with specbas – only one directory is allocated in your users/username hierarchy (Windows) or your home directory (Linux). Although you can create whatever directory structure you like in there, you cannot navigate outside of that directory. This is to ensure that rogue programs cannot damage your system.
SpecBAS implements two filesystems – the HOST filesystem and PACKAGES. The HOST filesystem is the directory hierarchy mentioned above. PACKAGES are a kind of “virtual” filesystem which is in fact a file itself, treated as a filesystem by SpecBAS. PACKAGEs are useful for distributing your software – all files needed by a program can be bundled into one file which when mounted is treated as a filesystem invisibly. When a package is mounted, all filesystem commands are redirected to that package.
Finally, there are ASSIGNs – these are drive-like (think “C:” in windows/DOS) that are assigned to a directory on your host filesystem. They cannot be assigned to directories in a package. This is mainly so that you can easily access files on the host filesystem while a package is mounted. One useful assign is the “$:” assign – this refers to the current directory in the host filesystem. There are two other permanent assigns – SYS: which refers to the root of the host filesystem, and TEMP: which refers to /temp/ - this is used for unpacking files from a package for the graphics and sound libraries to access.
ASSIGN “source$” TO “directory”
Creates an ASSIGN which points to a location on the host file system, ie ASSIGN “TEMP:” TO “/temp/” will assign the TEMP: drive to the temp folder at the root of the filesystem. Thereafter, any files referenced by the “TEMP:” assign – such as “temp:mypic.bmp” - in their path will refer to the file in the /temp/ directory. This is handy for working on files in the host filesystem while you have a package mounted. An empty directory as the TO parameter will remove the assign from the internal list.

LIST ASSIGN
This command will list all currently assigned paths, with their Assign-form (SYS: for example) and the path that they point to.
COPY “source” TO “dest” [OVER]
COPY copies files from the source specification – which can include wildcards such as “*.txt” and “pic?.bmp” to the destination directory. The destination must exist. If the OVER parameter is specified, then files will be overwritten if they exist inside the destination directory, otherwise the operation will fail with an error if files already exist.
MOVE “source” TO “dest” [OVER]
Like COPY, this moves files from one place to another but also deletes the original files. Use with care, especially when specifying OVER.
ERASE “filespec”
ERASE DIR “directory” [ALL]
Deletes files from your hard disk or package. When deleting a directory, SpecBAS will generate an error if it’s not empty. Specifying the ALL parameter removes the contents of the directory recursively before deletion. Use with care!
MAKEDIR directory$

Creates the specified directory, if it doesn’t already exist.
RENAME “source$” TO “dest$”
Renames files and directories. The Source$ can contain wildcards, but be aware that the destination must also contain a matching wildcard. For example, “*.bmp” TO “*.png” is allowed, but “?pic*.bmp” TO “pic*.png” is not allowed.
LOAD filename$
Loads the program specified by the filename into memory. If it was saved with a LINE parameter, then execution will begin at that line. If the file is a package, then it will be mounted and if a program names “autorun” is found in the root of the package, it will be loaded and run.
MERGE filename$
Merges the program specified by the filename into the current program. Lines that have the same line number as lines already present in the current program will replace those lines, otherwise they will be inserted in numerical order. MERGE does not work with packages.
SAVE filename$ [[ASCII] LINE numexpr]
Saves the current program to the filename specified. If LINE is present, then it will be saved with a flag to execute the program from that line when loaded. If you specify ASCII after the filename (but before any LINE item) then the file will be saved as plain text which you can edit in your own editor. Programs saved this way can be loaded back, as long as the header “ZXASCII” is the alone on the first line of the program. An empty filename indicates that the current name (shown at the top of the editor) will be used.
INCLUDE file$,file$,file$...
INCLUDE will append the file specified to your program invisibly. This enables you to access code (in the form of procedures and functions) in that file from your current program. Because the code is added invisibly, you cannot jump into that code from your program, though code called in the form of a procedure is free to wander where it likes within its own file. Code in your program is likewise invisible to included procedures. If your program changes, then the included file is removed making this a runtime-only command.
SETDIR strexpr

Sets the current working directory to that specified, if the directory exists.
CAT [filespec$] [EXP] [ALL]
Lists the contents of the current directory to the screen. If the EXP keyword is added, then extra information is added to each entry, such as file size and creation date. The filespec can include wildcards and directories, such as “/temp/*.png”

Adding the keyword ALL indicates that CAT should search and list all items that exist within sub-directories too.
RECOVER
SpecBAS saves your work whenever you enter or alter a program line, and the RECOVER command will load in the last saved backup.
PACKAGE “filename$”
Opens a package and mounts it, but does not automatically run the “autorun” file within. Useful for modifying a package after it’s been closed.
PACKAGE NEW “filename$”
Creates a new package. If the package already exists, it is deleted and a new package created. If a package is already mounted, it is closed and the newly created one is opened. The new package is mounted ready for use.
PACKAGE ADD “filename$”
Adds a file from the host filesystem (this is the only command which will not use the package as a filesystem at this point).
PACKAGE PROTECT
PACKAGE UNPROTECT
Write protects (and removes write protection, respectively) your package. Any attempts to write to or modify a package which is write protected will generate an error.
PACKAGE CLOSE

Closes and un-mounts your package.

Filesystem Functions
GETDIR

Returns the current working directory.
FILEEXISTS filename

Returns true (1) if the specified file exists, false (0) if not.
DIREXISTS directory

Returns true if the specified directory exists.
FNAME filename

Returns the filename portion of the string specified.
FPATH filename

Returns the path portion of the filename.
Memory Bank and Stream Functions
PEEK(bankid,offset)
DPEEK(bankid,offset)
QPEEK(bankid,offset)
FPEEK(bankid, offset)
Returns the value in the bank’s data at the given offset. PEEK returns a byte, DPEEK returns a Word (2 bytes, 0 to 65535) and QPEEK returns a LongWord (4 bytes, or 0 to $FFFFFFFF). FPEEK returns a floating point value, which occupies 8 bytes. They are difficult to construct manually, so use FPOKE$ to create them.
PEEK$(bankid,offset,size)
Returns a string from the specified bank, which is composed of the bytes from offset, with a length size.
STREAMLEN id

Returns the size of the stream specified.
STREAMPOS id

Returns the current read/write position within the specified stream.
BANKLEN id
Returns the size of the memory block in the bank specified.
Faffing with fonts
FONT NEW numvar,width,height,mode[,TRANSPARENT index]
Create a new font with FONT NEW, which returns the bank number in the numeric variable parameter. The mode can be FONT_MONO or FONT_COLOUR, and if colour you can specify an optional transparent colour index – any pixels of that colour in the font’s graphical image will not be drawn. Colour fonts take their colours from the current screen palette.
FONT TRANSPARENT id,index
You can set the transparent index of an already created font using the FONT TRANSPARENT command.
FONT ERASE id
You can delete a font bank with FONT ERASE or BANK ERASE.
FONT id
After creation (or having been loaded with LOAD BANK), the new font bank needs to be activated as the current font before it can be used, and you do that with FONT command on its own. Any subsequent PRINT commands will then use that font.
Font Functions
UDG <numexpr|strexpr>
For a numeric parameter, returns the address in the current font bank’s memory block of the graphical data for the UDG number supplied. For example, for the UDG associated with “A” you would specify 65 and given an 8x8 font, the offset would be (65+128)*64.
For a string parameter, the UDG is assumed to be the first character and therefore specifying “A” as the parameter will be the same as specifying 65 as above.
FONTBANK

Returns the Bank ID number of the current font.
FONTw

Returns the current font character width.
FONTh

Returns the current font character height.
FONTm

Returns the type of font in use – 1 for a colour font, and 0 for a mono font.
FONTt
Returns the transparent index of the current font, or -1 if none exists or the font is MONO type.
Window/Screen manipulation
FPS count
This command sets the number of frames that SpecBAS will try to display every second. The default is 50 frames per second. You can specify a minimum of 1 and a maximum of 200 – though actually achieving 200 frames per second might tax your computer a little. You can add a small speed boost to your program by specifying a low FPS if smooth screen updates are unnecessary. Note that the editor always runs at 50fps, and that any sprites or synchronisation performed with WAIT SCREEN will be affected by this command.
SCREEN <WINDOW|FULL> [width,height]
Decide if SpecBAS should run in a window or occupy the entire screen. If width and height are present, then the size of the window or screen is set accordingly. Windows can be any size, but full-screen resolutions depend on the capability of the host PC’s graphics card.
SCREEN <LOCK|UNLOCK|UPDATE>
In order to maintain smooth screen updates, it is sometimes useful to prevent the screen from being drawn to until it’s ready to be displayed. Use SCREEN LOCK to do this, and SCREEN UNLOCK to allow drawing again. While locked, SCREEN UPDATE will force an update of the screen regardless of locked status.
SCREEN GRAB strvar,x,y,w,h [TRANSPARENT index]
This command, along with the WINDOW GRAB command, will get a rectangular section of the screen and store it in a string variable. It is not recommended that you PRINT this variable, as the contents will not make much sense to a human. The string variable will contain a small header and pixels from the grabbed area (including any windows that overlay the selected region), which can be placed in a window with WINDOW PUT command, which will be discussed later. Graphics-in-strings are used in a variety of other commands.
The header consists of the following 10 bytes:
Graphic Width

4 Bytes
Graphic Height

4 Bytes
Transparent colour

2 Bytes
You can convert the width and height to a string of four bytes with the QCHR$ function, and the Transparent colour to a string of two bytes with the DCHR$ function. If no transparent colour is used, then you should write 65535 in this space – two bytes of 255 each. The width and height are multiplied together and compared to the length of the string (without this header) to determine if the string can be used as a graphic.
CLIP x1,y1 TO x2,y2

Sets a clipping rectangle in the current drawing surface – restraining all drawing
operations to the rectangle specified. To remove clipping, use CLIP OFF. This
command can also be used in PRINT and other graphics commands to set a
temporary clipping rectangle, in the same manner as INK and PAPER or OVER.
WINDOW NEW numvar,x,y,w,h [TRANSPARENT index]
Windows are “screens” that are attached to the current screen. They are rendered in z-order, with the main display (window 0) as the first. Use WINDOW NEW to create a new window at coordinates x,y and size w,h in pixels. Optionally, a transparent index can be supplied, which causes any pixels of that colour to be skipped whilst the window is drawing.
Having many visible windows can cause a small performance penalty, so use them with care. Window size is unimportant, however, as portions which are not within the visible screen are not drawn. Windows can be any size.
WINDOW id
Issuing a single WINDOW command with a valid window-id number will cause all further output to the screen to be redirected to that window. This includes PRINT commands.
WINDOW ORIGIN id,x1,y1 TO x2,y2
Sets up a new coordinate system for the window specified. When set, you can then use those coordinates with other graphics commands. If you specify an origin from -1,-1 to 1,1 then PLOT 0,0 will plot one pixel in the centre of the screen. All commands that require coordinates will be affected, but those that work with width and height values (such as for graphic grabbing) will not for those parameters, as they deal exclusively with pixels.
WINDOW ORIGIN id OFF

Turns off any coordinate system for the window specified.
WINDOW CLIP id,x1,y1 TO x2,y2

Enables clipping (see CLIP command above) for the specified window.
WINDOW CLIP id OFF

Removes clipping on the specified window.
WINDOW MOVE id,x,y
Moves a window to the coordinates specified, relative to the screen. Window 0 cannot be moved.
WINDOW SIZE id,w,h
Resizes a window. This is destructive, and the window contents will require re-drawing afterwards. You cannot resize Window 0.
WINDOW <FRONT|BACK> id
Alters the z-order of a window. Bringing it to the front will cause it to be drawn last, and therefore in front of all other windows. Sending it to the back will cause it “disappear” behind all other windows. The main screen (window 0) is classed as a window, so can be moved in this way.
WINDOW <SHOW|HIDE> id

This makes a window visible or invisible.Window 0 cannot be hidden.
WINDOW <SCROLL|ROLL> id,x,y
These commands move the window contents in the x and y axes by the specified amount. SCROLL will move destructively – any contents that move off the visible area are lost, where as ROLL will wrap those contents on at the opposite edge.
WINDOW COPY src_id,x,y,w,h TO dest_id,x,y

Copies a region from the source window to the destination window.
WINDOW GRAB strvar,id,x,y,w,h [TRANSPARENT index]
As for SCREEN GRAB, this will copy a rectangular region of the screen into a string variable with an optional transparent parameter. This, unlike SCREEN GRAB, will not include any overlapping windows, just the window specified.
WINDOW PUT strexpr,id,x,y [ROTATE angle] [SCALE factor]
WINDOW PUT GRAPHIC gfx-id,window-id,x,y [ROTATE angle] [SCALE factor]
Draws a previously GRABbed graphic stored in a string (or a GRAPHIC stored in a graphic bank), at the coordinated specified. You can also specify a rotation angle and scaling factor. Rotation occurs around the central point.
WINDOW MERGE id|ALL
This command will delete the window specified (or all of the windows if ALL is specified) and merge its contents with the main window.
WINDOW FLIP id
WINDOW MIRROR id

Flips or mirrors a window.
WINDOW ERASE id
Removes the specified window. If this window was previously focused for drawing, then focus moves back to window 0 (the main screen).
Screen and Window functions
WINw id

Returns the width of the specified window.
WINh id

Returns the height of the specified window.
WINx id

Returns the x-coordinate of the specified window.
WINy id

Returns the y-coordinate of the specified window.
ORGX

Returns the current left-most coordinate in the current window’s ORIGIN system.
ORGY

Returns the current topmost coordinate in the current window’s ORIGIN system.
LOGW

Returns the logical width of the window’s ORIGIN system.
LOGH

Returns the logical height of the window’s ORIGIN system.
PTOLOGX n

Converts a pixel’s x coordinate to the logical system (set with the ORIGIN command).
PTOLOGY n

As above, but for Y coordinates.
LTOPX n, LTOPY n

A pair of functions that convert coordinates in the logical (ORIGIN) system to pixel
coordinates.
SCRw

Returns the width of the screen (or host window if in windowed mode).
SCRh

Returns the height of the screen or host window.
cWIN
Returns the window ID number of the current drawing window. 0 represents the screen itself.
WINOFF numexpr

Returns the offset inside the screen bank’s memory of the specified window.
FRAMES
Returns the number of screen updates (frames) since SpecBAS was started – this is measured in 50ths of a second.
POINT (x,y)
Returns the palette index of the expressed pixel, relative to the top-left of the current window.
SCREEN$(cx,cy)

Returns the character that was PRINTed at the coordinates specified. The
coordinates must be character based (ie, the same as when using PRINT AT) and
the font used must have been mono, and not transparent.
Zoning Out
Zones are regions of the screen or a window which can be tested against to see if a point falls within them. This is useful for determining if say, a sprite has entered a particular area or if the mouse pointer has been moved to a position that the user is interested in.
ZONE NEW numvar,x1,y1 TO x2,y2
ZONE NEW numvar,x,y,w,h
Creates a new zone and assigns the id number to the variable supplied. The zone will be attached to the current window, and coordinates are in the logical pixel units so obey the ORIGIN set for that window.
ZONE UPDATE id,x1,y1 TO x2,y2
ZONE UPDATE id,x,y,w,h

Changes a previously created zone to new coordinates.
ZONE MOVE id,dx,dy
ZONE MOVE id TO x,y
Moves a zone either a specified distance (or offset) from its current position, or to a new position entirely. Retains its width and height.
ZONE ERASE id

Removes a zone from the internal list.
INZONE(x,y)
Function – Checks each zone for the current window against the coordinates supplied and returns the first zone found that matches those coordinates inside its rectangle. Returns -1 if the coordinates supplied don’t match any zones.
Playing with Colours
INK numexpr
Sets the current INK – the pen colour used to draw text and other graphical constructs. 8 means that SpecBAS will use the colour already present onscreen, which also applies to other colour specifier commands such as PAPER, INVERSE and OVER.
PAPER numexpr
Sets the background colour for drawn text. This only makes sense for those fonts declared as “MONO” type.
INVERSE numexpr
Provided mostly for compatibility with the original Sinclair BASIC, this when activated by a numerical expression which evaluates TRUE, will swap INK and PAPER values.
OVER numexpr
The numeric expression must evaluate to one of the values between 0 and 7 inclusive. 0 is “off”, the default state. Other values (1 to 7) cause pixels drawn by the graphics commands to interact with pixels already present in different ways:
1:
XOR – performs an exclusive OR between the two pixels to be blended.
2:
ADD – Adds the two pixels together, wrapping around when necessary.
3:
SUB – Subtracts the old pixel from the new.
4:
AND – Performs a bitwise AND on the two pixels.
5:
OR – Performs a bitwise OR on the two pixels.
6:
NOT – Performs a NOT on the new pixel, effectively inverting it.
7:
AVG – Adds the two pixels together and then divides by two, to average.
8:
MAX – Compares the two pixels and takes whatever is higher
9:
MIN – As for MAX, but uses the minimum
10:
MUL – Multiplies the two pixels together
11:
RECOLOUR – If the destination pixel is 0, it gets PAPER, otherwise INK.
SCALE sx,sy
Sets the current scaling values for the current window. Scales all text output by the values specified. Setting SCALE 2,2 will set all text to double width and height.
ITALIC 1/0

Sets all text that follows to be displayed in Italics.
BOLD 1/0

Sets all text that follows to be displayed in bold type.
PALETTE index,<r,g,b|RGB>
Sets the palette entry specified to the colour denoted either by the red, green and blue values passed, or by the value which represents all the channels in one, in $RRGGBB format. Red, Green and Blue can be in the range 0 to 255.
PALETTE HSV index,<h,s,v|HSV>
As above, this sets the palette using Hue, Saturation and Value components rather than RGB values. As hue is specified in the range 0..360, the HSV Value takes the form $HHHHSSVV.
PALETTE <SHL|SHR> amount[,start TO end]
This will cycle the colours of the palette, left or right respectively. If the range “start TO end” is specified, then only those colour indexes inclusive to the range will be cycled. The palette will wrap around as it cycles.
PALETTE DEFAULT
Sets the current screen palette to the default palette – original spectrum colours and the “web safe” palette, with some greyscales.
Colour Functions
RGBtoINT(red,green,blue)

Converts the supplied trio of values into a valid $RRGGBB format colour number.
RED numexpr
GREEN numexpr
BLUE numexpr

Extracts the red, green or blue component from a $RRGGBB format colour.
RGB index

Returns the palette entry specified (0 to 255) in $RRGGBB format.
RGBtoHSV [numexpr|r,g,b]
Converts from $RRGGBB format to $HHHHSSVV format. Hue is in the range 0..360, so needs two bytes to convert properly.
HSVtoRGB [numexpr|h,s,v]

Converts from $HHHHSSVV to $RRGGBB.
HSVtoINT (hue,saturation,value)

Converts from the HSV Values provided to $HHHHSSVV.
HUE index
SATURATION index
VALUE index

Extracts the required Hue, Saturation and Value from a $HHHHSSVV format colour.
HSV index

Returns the $HHHHSSVV value of the palette entry specified.
RGBn numexpr
RGBf numexpr
RGBc numexpr
These functions take a $RRGGBB format colour and attempt to find, in the current palette, the closest, furthest match and the best contrasting colour respectively.
Graphical things
CLS [numexpr]
Clears the current window to the colour specified. If no colour is present, then the last PAPER value is used. Using CLS to change paper colour is non-permanent.
PRINT [[colour-item|expr|location-item]print-sep...]
Displays optional textual items on the screen. Text can be any expression, be it numerical or string. Colour items can be included in the parameter list if desired, and will temporarily affect INK, PAPER, OVER, CLIP and INVERSE settings. The location of the text can be set with the AT command (which moves text based on a grid whose size is the size of a single character), the MOVE command which uses a pixel-based grid and the TAB command which moves text to a position within the current line. The size of the text can be set with the SCALE command, which is followed by two comma-separated values denoting the scale in the width and height of the text. Use 1 to specify normal size, 2 to move up to double etc.
Print separators are “ ; ” which concatenates strings, “ ’ ” which forces text to appear on a new line, and “ , “ which moves to the next tab-stop.
Bear in mind that the AT command is unaffected by the current window’s ORIGIN coordinates, but the MOVE command is affected.
TEXT
As for the PRINT command, TEXT puts text on the screen and takes the same parameters. The only difference is that the TEXT command does not wrap text at the screen edges, and does not cause the screen to scroll when text runs off the bottom.
OUT var$|streamID|SCREEN
Use OUT to redirect all text output to a variable, a stream or the (default) screen. Any text generated by any command that does so will be redirected (including colour formatting codes if specified) to your chosen destination. Be aware that
OUT s$
CAT
PRINT s$
Will likely be a bad move on your part!
PLOT [colour-item;...] {x,y|array()} [;...]
Takes many parameters, with a minimum of one. Parameters are either a pair of comma-separated values (x and y coordinates) or an array. The coordinate parameter draws a single pixel in the current INK colour unless INK is changed in the colour-items parameter. If an array is passed, and that array has a minimum structure of x/y parameters (ie, “DIM points(100,2)”), then all points in the array are plotted. A third parameter may be specified, and will be taken as the colour of the point in the array, otherwise the current INK is used. A further fourth value may be used to specify the radius of the point to be plotted.
TRANSFORM2D src() [TO dst()] {MOVE tx,ty|SCALE sx,sy|ROTATE angle}...
Performs many transformations on the src() array of points supplied. If the optional dst() array is present, then that array will be created (if necessary) and its structure altered to suit – the resulting array will contain all the information in the source array, but will have the first two values per entry altered. If the dst() array parameter is omitted, then the transformations will be applied to the source array. The MOVE parameter will translate the points by the given amounts relative to the origin (0,0) – ie, each point will have the values added to their coordinates. SCALE will multiply the coordinates by the amounts specified, relative to the origin. ROTATE will rotate the points by the angle specified (degrees or radians depending on which is being used currently) about the origin. Transformations will be executed in the order in which they are specified, and there may be as many as you like.
MOVE n
MOVE x,y
MOVE TO x,y
Sets the current PLOT or drawing position. A single parameter will move in the direction of the current turtle heading (see TURTLE GRAPHICS for more info on this system), and two parameters will move as an offset in the x and y axes. Specifying TO moves to an absolute position in the window.
DRAW [[colour-item;...][[[x,y]|array()] TO][x,y[,angle]...]|array()]
Draws a line from the last point plotted (by any of the drawing commands) to an offset specified by x and y, or for a distance of n pixels if only one parameter is specified. See the turtle graphics commands for more info.
For example, DRAW 10,10 will draw to position 110,110 if PLOT 100,100 had been executed beforehand. Specifying the TO command before the coordinates draws from the last point plotted to the coordinate specified. Adding a third coordinate draws an arc which turns through angle degrees (or radians, by default) as it travels from point to point. This parameter retains the bugs found in the original Sinclair implementation; large values cause interesting patterns. Parameters can be chained; DRAW 10,10;20,20;30,30 will draw three lines to three successive points. Lastly, DRAW x1,y1 TO x2,y2 will draw a line between two points, ignoring the last point plotted. Specifying a suitable array (a minimum of 2 dimensions, with the second a minimum of 2) as the parameter for DRAW and DRAW TO will chain lines together in one operation.
CURVE [colour-item;...] x1,y1 TO x2,y2,n
CURVE [colour-item;...] x1,y1 TO x2,y2 TO x3,y3,n
Draws a bézier curve from the last point plotted, via (but not through) the control point x1,y1 to end at the point x2,y2, with n subdivisions. More subdivisions take longer to calculate, so use with care. By default, the curve starts at the point last plotted, but this can be overridden by using the second form of the command above with x3,y2 which will start from x1,y1 instead.
RECTANGLE [colour-item;...]x1,y1 TO x2,y2 [FILL [fill$]]
RECTANGLE [colour-item;...]x,y,w,h [FILL [fill$]]
Draws a rectangle in the current INK colour (unless changed in the colour-items) from x1,y1 at the top-left corner to x2,y2 at the bottom-right. The coordinates will be reversed if x2 or y2 are less than x1 and y1. Specifying a string as a final parameter indicates the fill pattern, and can be text (which will be rendered in current INK, PAPER and FONT colours) or a previously obtained graphic from a SCREEN GRAB or WINDOW GRAB operation. An empty string will fill with solid colour, as will no string specified.
DRAW, like the other commands CIRCLE, ELLIPSE and POLYGON require an initial coordinate to work from, and do not operate from the last point plotted.
CIRCLE [colour-item;]x,y,r [FILL [fill$]]
Like RECTANGLE, this draws a circle at the coordinates x,y with a radius r, and as with RECTANGLE, an optional fill string expression can be appended. See above for information about how to use the fill expression.
ELLIPSE [colour-item;]x,y,rx,ry [FILL [fill$]]

Similar to the CIRCLE command, but allows you to specify a major and minor radius.
POLYGON [colour-item;]x1,y1 TO x2,y2 TO x3,y3 [TO xn,yn...][FILL [fill$]]
POLYGON [colour-item];array() [FILL [fill$]]
POLYLINE [as above]
Draws an n-sided polygon from a minimum of three points (a triangle is the simplest form of polygon permitted) to any number of points as a maximum. Optionally, you can also specify an array of 2D coordinates to be used as vertices. It can be optionally filled using the fill string expression detailed in the DRAW reference. POLYLINE will draw an open-ended polygon, i.e, will leave the last line off.
FILL [colour-item;]x,y[,fill$]
Performs a fast flood-fill starting at the point specified. All pixels touching the destination pixel that share the same colour will be affected. Filling will be done with the currently set INK colour, unless a colour-item in the parameter list specifies otherwise. Again, a texture fill can be used by specifying a fill string expression.
Turtle Graphics Commands
Specbas provides some commands and functions for building LOGO-like sequenced of commands which can be used with the EXECUTE command.
DRAW [colour-item;]n
When only one coordinate parameter is specified with DRAW, it is taken to be a distance amount rather than an actual coordinate. A line is drawn from the last point drawn to the point n pixels along a line in the current turtle heading.
ROTATE n
ROTATE TO n
Sets the heading that the turtle is pointing towards. When ROTATE is used alone with a parameter, that value is added (either as degrees or radians) to the heading – positive values turn clockwise, negative anti-clockwise. When TO is specified, then the value is taken as an absolute heading, and the turtle points in that direction.
FACE x,y
Sets the turtle heading so that it points towards the coordinated specified.
Turtle Graphics Functions
HEADING
Returns the current turtle heading in the currently set units (Degress or Radians).
Spritely sprites
Sprites are graphics that inhabit a window in SpecBAS, and are drawn every frame without needing any code from the user after they have been set up. They can also move, rotate and resize over a period of time if you want. Sprites can be “cloned” to produce many copies of the same sprite which use the same animation and rotation/scaling as the sprite being cloned, but can be position at many places onscreen at once.
SPRITE NEW numvar,x,y [COPY id] [COLLIDE] [OVER m] [WRAP {WINDOW|CLIP}]
Sets up a new sprite. Each sprite is a memory bank, and so the numeric variable will contain the sprite’s bank ID number after creation with this command. The only parameters you need to specify are the x and y coordinates that the sprite will start at. Sprites cannot be used until they have had a graphic frame added to them, and made visible with SPRITE SHOW. Sprites are allocated to the window that is currently active – normally the main screen (Window 0), but you can alter this.
Sprites can be set to provide collision information if you specify the COLLIDE flag. This will halt the sprite and set it’s collision status to true if any of its non-transparent pixels overlap any non-paper pixels whilst it is being drawn. If you have set up a ON COLLIDE statement in your program then it will trigger once the sprite has been drawn. It should be borne in mind that when two sprites collide only one will read as collided – the first, being the first to be drawn, will find no pixels to collide with whereas the second will.
Specifying an OVER flag will set the sprite to draw with the particular blend mode.
Specifying WRAP followed by either WINDOW or CLIP sets the sprite to wrap around if it moves off either the owning window edges or the current clipping rectangle.
Using COPY with a valid sprite id will create a copy of that sprite rather then a new blank sprite. The new sprite will inherit all the properties of the sprite being copied, though you can still override wrapping and OVER modes as normal.
SPRITE COLLIDE CLEAR [id]

Clears the collision flag from the (optionally) specified sprite.
SPRITE ADDFRAME id, gfx$ [PAUSE delay]
Sprites need a graphic to be supplied (as a string, see the graphics commands listed earlier – GRAB and PUT) in order to be displayed. You can add as many frames as you like, and the sprite will animate through each of them each frame update. You can specify an optional delay (in frames, or 50ths of a second) by specifying the PAUSE parameter. The default delay is one frame.
SPRITE SHOW id
SPRITE HIDE id
These commands will hide or show the specified sprite. By default, sprites are hidden after creation, which prevents them from showing up on the screen while you add animation frame and movement paths etc.
SPRITE CLEAR id
This will remove all the animation frames from the sprite. Note that this will not delete the sprite from the bank list.
SPRITE MOVE id,dx,dy [STEP px|FRAMES time]
SPRITE MOVE id TO nx,ny [STEP px|FRAMES time]
SPRITE MOVE id TO WINDOW n
Use these commands to move sprites to new locations in their window. The first syntax moves the sprite by an offset – dx,dy are the amount of pixels (or the distance in the current coordinate system) to move. Positive values move to the right and down, negative to the left and up. To set the sprite’s coordinates, use the TO syntax – this causes the sprite to immediately jump to the location you specify, rather than move by an offset. Use the FRAMES parameter to cause the sprite to move to the new coordinates or offset over a period of time measured in 50ths of a second (frames), or the STEP parameter to move to the new destination at a specified rate of pixel per frame. Note that lateral or vertical movements will complete in the same amount of time as diagonal movements. SpecBAS will move the sprites for you each frame, so you can get on with something else while it does it.
Finally, you can move the sprite to a different window by using the TO WINDOW syntax.
SPRITE ROTATE id,angle [FRAMES time]
SPRITE ROTATE id TO angle [FRAMES time {CW|CCW}]
This command rotates a sprite about its central point. The first syntax takes a delta angle, which is added to the sprite’s own internal angle value – a positive value will rotate to the right (or clockwise) and a negative to the left (counter-clockwise). Using the SPRITE ROTATE command with the TO parameter will take the angle as an absolute value and immediately rotate to that angle. As with the SPRITE MOVE command, you can specify the FRAMES parameter to make the rotation over many frames unattended. If you want to rotate TO a particular angle with the FRAMES parameter, you will also have to specify which direction to rotate – CW to move clockwise, CCW to move counter-clockwise.
SPRITE SCALE id,factor [FRAMES time]
This command will scale (resize) the sprite. If no FRAMES parameter is used, then the sprite will be instantly scaled to that factor, based on the size of the original frame – so a scaling factor of 1 will draw it at regular size, a factor of 2 will be double size, and 0.5 will be half size. The FRAMES parameter is used in a similar manner to the other commands listed above.
SPRITE STOP id
This command will halt any movement, scaling and rotation that a sprite is performing, but will not reset the angle or scale factor.
SPRITE ERASE id
Erases the sprite from memory, deleting all information (such as animation frames etc). This is the same as using the BANK ERASE command on the bank the sprite inhabits.
SPRITE CLONE id,x,y
Creates a clone of the sprite specified at the coordinates specified. You can create up to 256 clones. Things to bear in mind about clones – they will use the same animation and scaling/rotation as the sprite being copied, but can occupy many different positions. The position is stored as an offset to the original sprite (though absolute coordinates are supplied to SPRITE CLONE), so moving the original sprite will also move the clones.
SPRITE CLONE MOVE id,index TO x,y

Moves a clone (index) of the sprite (id) to the coordinates specified.
SPRITE CLONE ERASE id, index

Removes a clone. Note that all clones after this clone will have their index numbers
decreased by one.
SPRITE POINT id,x,y
Sets the “hotspot” upon which the sprite is drawn. By default this is at 0,0 – the top left of the sprite. You can move it to wherever you like within the sprite and can be considered a drawing offset.
SPRITE ANIM PLAY id,[n [TO m]] [OPTION p]

This powerful command controls sprite animation. If only the sprite ID is specified, then that sprite’s animation is resumed or commenced using the animation data specified during the sprite’s creation. If n is specified, then animation commences from frame n. Adding TO and a frame number causes animation to start at n and end at m. Specifying OPTION sets what the animation does when it reaches the end:

0:
Default – plays and loops endlessly.

1:
Pingpong – animation reverses direction when it hits the end (or start).

2:
Once – animation stops when it reaches the end

3:
Reverse-looping – loops as the default, but backwards

4:
Reverse-pingpong – bounces from start to finish backwards

5:
Reverse-once – animation starts at the end and works back
SPRITE ANIM STOP id

Stops the specified sprite’s animation. You can resume it using SPRITE ANIM PLAY id.
SPRITE FRAME id,n [PAUSE m]

Sets the specified sprite’s animation frame to the value given by n. You can optionally set a delay in frames after PAUSE before animation resumes.
SPRITE MIRROR id
SPRITE FLIP id

Flips and mirrors the sprite permanently. Applies to all frames.
SPRITE PUT id

Places a permanent copy of the sprite’s current animation frame on the sprite’s window.
SPRITE OVER id,mode

Sets the drawing mode of the specified sprite, using the modes set by the OVER command.
Sprite Functions
SPFRADDR(id,frame)
Returns the address (offset) in the sprite’s memory bank of the numbered frame. Each frame has a header attached before the graphic data – the animation delay (4 bytes), the width (4 bytes), the height (4 bytes) and the transparent index (2 bytes - $FFFF if no transparency specified, otherwise the index of the colour that should not be rendered). Frames are numbered starting from 1.
SPFCOUNT id

Returns the number of frames the specified sprite has attached to it.
SPRITEx id
SPRITEy id
SPRITEw(id,frame)
SPRITEh(id,frame)
Returns information about the sprite id specified – the position of the sprite, and the width/height of the specified frame. Width and height will always be measured in pixels, the coordinates will be measured in whatever system the sprite’s window is using.
SPSCALE id
SPROT id

Returns the scale factor and rotation angle of the specified sprite.
SPRITEv id
Returns 1 if the sprite is visible (showing, not necessarily actually in the viewable portion of the screen) or 0 is the sprite is hidden.
SPFRAME id

Returns the current animation frame of the sprite, or -1 if animation is stopped.
SPCOLL id

Returns the collision status (1 or 0) of the specified sprite.
SPCLX(id,index)
SPCLY(id,index)

Returns the position (X/Y coordinates respectively) of the sprite’s (denoted by the id
parameter) clone (the index parameter).
Loading (and working with) graphics files
SpecBAS can handle a number of graphic file formats – PNG, GIF and BMP are the most common. Files can be any size but must be a paletted format (8Bpp maximum). Use the following commands to load graphics files.
GRAPHIC NEW numvar LOAD filename$ [TRANSPARENT index]
GRAPHIC NEW numvar,width,height [TRANSPARENT index]
GRAPHIC NEW numvar,graphicstr$
These commands all create a new graphic bank in memory, and assign the index number of that graphic to the numeric variable supplied. Note that when supplying a “graphicstr$” (a graphic in a string, such as that created by WINDOW GRAB), the transparent colour index is inherited from the incoming graphic. When creating a graphic bank by specifying the width and height, the background is either the Transparent index if specified, and the current PAPER if not.
The bank’s memory represents the bitmap surface, row by row, top-left to bottom-right.
GRAPHIC LOAD id,filename$ [TRANSPARENT index]
Loads a new graphic to a previously created bank, specified by the ID number.
GRAPHIC GRAB str$,id,x,y,w,h [TRANSPARENT index]
Like the command WINDOW GRAB, this will copy a subsection of the graphic bank specified into the string variable parameter, with an optional transparent colour.
GRAPHIC PUT strvar,n,x,y[,ROTATE a][,SCALE n]
Again like the WINDOW PUT command, this allows you to paste graphics into a graphic bank.
GRAPHIC ROTATE id,angle
Permanently rotates a graphic bank. This will likely cause the bank to increase in size, so watch out for that. The angle specified depends on the mode used by your program – degrees or radians.
GRAPHIC SCALE id,size
Scales the graphic bank’s surface by the specified amount – 0.5 will scale to half size, 2 will double the size. The change is permanent, so scaling by values <1 will result in loss of some pixels.
GRAPHIC FLIP id|gfx$
GRAPHIC MIRROR id|gfx$
These commands will reverse an image in the horizontal axis (with FLIP) and in the vertical axis (with MIRROR). This change, as with rotation and scaling, is permanent. If the parameter is a string, then it will be treated as a graphic-string and flipped/mirrored in place.
GRAPHIC ERASE id
The ERASE command can be used to delete a graphic bank from memory. Has the same effect as BANK ERASE, but checks if the bank is a graphic and halts execution with an error if not.
GRAPHIC REMAP id [DITHER dither-type]
Causes a graphic bank to inherit the current screen palette, and then remaps all the pixels in the graphic to the closest matches in the new palette. This allows you to draw that graphic onto the screen or a window with minimal difference in colour. Optionally, you can specify a dithering option with the DITHER keyword followed by a number from 0 to 8. This number corresponds to the following constants you can use in place of the number:
0:
dtNONE

(No dithering)
1:
dtRANDOM

(Random-dot style dithering)
2:
dtDIAGONAL5
(5-level diagonal dithering)
3:
dtDIAGONAL9
(9-level diagonal dithering)
4:
dtCLUSTERED
(Clustered-dot dithering)
5:
dtDISPERSED
(Dispersed-dot dithering)
6:
dtHALFTONE

(Halftone-style dithering)
7:
dtORDERED16
(16-level ordered dithering)
8:
dtORDERED64
(64-level ordered dithering)
9:
dtFLOYD

(Floyd-Steinberg error diffusion)
10:
dtJARVIS

(Jarvis error diffusion)
11:
dtSTUCKI

(Stucki error diffusion)
12:
dtBURKES

(Burkes error diffusion)
13:
dtSIERRA3

(Sierra-3 error diffusion)
14:
dtSIERRA2

(Sierra-2 error diffusion)
15:
dtSIERRA

(Sierra error diffusion)
16:
dtATKINSON

(Atkinson error diffusion)
17:
dtSTEVENSON
(Stevenson-Arce error diffusion)
GRAPHIC PALETTE id DEFAULT
Sets a graphic bank’s palette to the default palette – note that this is not the current screen palette.
GRAPHIC PALETTE id,index,RGB [HSV]

Changes a colour in the specified graphic’s internal palette. Use the HSV suffix to indicate that the values specified are Hue, Saturation and Value. You can specify individual component of Red, Green, Blue (or Hue, Saturation and value) or you can use the 4-byte long version which is made up of $00RRGGBB (or $HHHHSSVV for HSV values). The index value is the palette entry’s index number, from 0 to 255.

PALETTE COPY id,start,count TO index
Copies the specified palette entries from a graphic’s palette to the specified index (and onwards) of the main screen palette. Use GRAPHIC REMAP to then remap the graphic to the newly created main screen palette.
WINDOW GRAPHIC id
Like the WINDOW command listed above, this instead of directing all text and graphical output to a window, sends it to a graphic bank’s surface instead. While active, no output will be visible on the screen. Use the regular WINDOW command to return output to the screen or a chosen window.
GRAPHIC ORIGIN id,x1,y1 TO x2,y2
As with the WINDOW ORIGIN command, this sets a coordinate system for use when drawing with the usual graphics commands on a graphic with the WINDOW GRAPHIC command.
GRAPHIC ORIGIN id OFF
Turns off the current coordinate system (if enabled) for the specified graphic.
GRAPHIC CLIP id,x1,y1 TO x2,y2

As for windows with the WINDOW CLIP command, this will set up a clipping
rectangle for the selected graphic bank. Any drawing commands that affect this
graphic will be constrained to that rectangle.
GRAPHIC CLIP id OFF

Turns off clipping on the selected graphic.
Graphics functions
GFX$ id (Function)
This function returns the specified bank as a graphic-string suitable for use in any command that requires a graphic – any of the filled ellipse, rectangle, circle or floodfill commands, and the various PUT commands will be able to use the resulting string.
GFXW id
GFXH id
GFXTRANS id
Returns information about the specified bitmap – width, height and current transparent index if set.
GRGB (id, index)
GHSV (id, index)
Returns the specified palette index from a graphic bank’s palette, either as RGB or HSV data. The value returned is in long (4-byte) value format - $00RRGGBB or $HHHHSSVV.
GPOINT(id,x,y)
Returns the pixel value at position x,y in graphic specified by the id. Very similar to POINT.
TEXTURE$ str$
Converts str$ to a graphic, and returns it as a string suitable for (for example) WINDOW PUT. If empty, creates an 8x8 filled block of the current INK colour. If any other string, it creates a graphic that represents that string as if it had been PRINTed. This can be useful for any command that uses a FILL parameter.

Terrific Tilemaps
Tilemaps are a “map” of tiles – graphical images – that make up a larger image. This is handy for games which display a large amount of images in a map. Tilemaps in SpecBAS can be draw both scaled and rotated like other graphics. Tilemaps require a graphical parameter to be passed when creating them – this should be either a graphic bank or a string-graphic created with string functions. It should hold all the tile graphics needed for the map. All tiles must be the same size, and the graphic should be just large enough to hold them, with no margins. Each tilemap can address up to 1024 different tiles in the graphic.
TILEMAP NEW id, width, height GRAPHIC gfx-id | gfx$, tilewidth, tileheight
Creates a new tilemap in memory. The id parameter should as always be a numeric variable which will hold the memory bank number of the newly created tilemap.Width and Height are the size of the tilemap – the number of tiles it can hold, not the pixel size. The GRAPHIC parameter should point to an already created (and valid, see above) graphic bank or graphic string. The final two parameters are the size of the tiles in the graphic themselves.
TILEMAP GRAPHIC id, gfx-id | gfx$
This command allows you to change the graphical set (and thus the visual look of the tiles) to another graphic. The same rules apply to this graphic as above, though the size of the tiles can change.
TILEMAP SET id,x,y,tile

Sets a particular tile in a tilemap to point to the desired tile.
TILEMAP CLEAR id

Clears the tilemap specified. All tiles are re-initialised to -1, indicating no tile.
TILEMAP DRAW id,offx,offy [SCALE n] [ROTATE rx,ry,angle] [TO x,y,w,h]
Draws the selected tilemap to the current window. Offx and Offy are offsets into the tilemap – this indicates where in the tilemap (in pixels, not tiles!) the topleft corner resides. Any scaling and rotation is applied after the offset is applied. Scaling is any number and is used as a multiplier – 2 would double the pixel sizes, 0.5 would halve them. Rotation is different to rotating other objects like graphics, and requires coordinates to centre the rotation about. These coordinates are independent of the offset coordinates. Tiles set to -1 are not rendered.
Tilemap Functions
GETTILE(id,x,y)

Returns the tile index at the supplied coordinates in the tilemap specified.
3D Graphics
SpecBAS provides rudimentary functions for processing 3D graphics. This capability is in development and commands or functions may change in the future. Currently only the ability to transform 3D coordinates into 2D screen-space coordinates is available.
Each command takes an array (in much the same way that PLOT does) of coordinates. An example of a 3D point array would be:
DIM points(1000,3)
Which would result in an array of 1000x3 values – the 3 values being the x,y and z coordinates. A fourth optional value may be specified in DIM which denotes the colour of the point. There are currently two commands devoted to 3D point manipulation:
TRANSFORM3D src() [TO dst()] {MOVE tx,ty,tz|SCALE sx,sy,sz|ROTATE rx,ry,rz}...
Performs many transformations on the src() array of points supplied. If the optional dst() array is present, then that array will be created (if necessary) and its structure altered to suit – the resulting array will contain all the information in the source array, but will have the first three values per entry altered. If the dst() array parameter is omitted, then the transformations will be applied to the source array. The MOVE parameter will translate the points by the given amounts relative to the origin (0,0,0) – ie, each point will have the values added to their coordinates. SCALE will multiply the coordinates by the amounts specified, relative to the origin. ROTATE will rotate the points by the amounts specified (degrees or radians depending on which is being used currently) about the origin. Transformations will be executed in the order in which they are specified, and there may be as many as you like.
PROJECT3D src() TO dst() {MOVE tx,ty,tz|SCALE sx,sy,sz|ROTATE rx,ry,rz}
This command will convert three-dimensional coordinates held in an array to two-dimensional coordinates suitable for passing to PLOT. The source array must be suitable – containing many points of at least three parameters each. Any further parameters in the source array will be preserved and copied to the destination array. The destination array will be altered or created if necessary. The three optional parameters in the command (MOVE, SCALE and ROTATE) control the camera. MOVE moves the camera to a point in 3D-space. ROTATE points the camera in the specified direction. SCALE isn’t necessary, but will scale the points prior to movement and rotation.
Sounds Amazing
SpecBAS supports sound playback in four ways – Samples, Channels, beeps and Music. Samples are stored in memory as banks, and their data represents the sound sample. When a sample is played, you can optionally assign a channel number to that instance of the sample, which you can then control with the CHANNEL commands. You can play up to 128 samples at once, and you can play (and control) more than one instance of the same sample at the same time. Samples are designed to be used for spot effects and small musical jingles – for actual music, use the MUSIC command – this streams larger files from disk or a memory bank, and can only be started and stopped. You can only play one music file at once.
Beeps can be emitted with the BEEP command, which allows you to produce a tone with flexible parameters.
VOLUME numexpr

Sets the volume of all SpecBAS sound output – from 0.0 to 1.0
SAMPLE NEW numvar [RATE numexpr] [SIZE numexpr] [BITS numexpr] [STEREO]
SAMPLE NEW numvar,strexpr
Creates a new sample bank, in one of two ways. The simplest is to use the second form, which uses the string expression as a filename, and loads the sample from disk. Supported formats are WAV, AIFF, MP3, MP2, MP1, OGG. Beware that all the sample data is loaded into memory, so it may not be a good idea to load long MP3 files this way. The numeric variable will contain the sample reference number (the Bank ID number).
The first method listed creates a new, empty sample bank and returns its bank ID number in the numeric variable. The parameters listed after allow you to override the default setting (44.1KHz, 16 Bit, Mono and zero bytes in length). Specify the rate in Hz. Bits can be either 8 or 16. Specifying the STEREO parameter will allocate two sound channels for this sample – a stereo sample. The SIZE parameter will create an empty sample of the required size in bytes, otherwise the sample will be zero bytes in length. As Samples are in reality a memory bank, you can use the BANK commands (such as PEEK, POKE and their variants) to make your own samples. You can also use the STREAM commands to write data to the bank.
SAMPLE PLAY numexpr [RATE numexpr|strexpr] [VOLUME numexpr] [LOOP] [PAN
numexpr] [CHANNEL numvar]
Plays a sound sample. The first parameter is the Bank ID number which holds the sample (which must have been created earlier with SAMPLE NEW), and the following optional parameters will change the way the sample is played. You can specify sample RATE (in Hz if a number is supplied, or as a string such as “c#3” as for the BEEP command. Middle-C (“c5”) is assumed to be the default rate), the sample VOLUME from 0 (silence) to 1 (full volume). Change the sample panning with the PAN parameter from -1 (left) to +1 (right). Changing the sample rate, voume and panning do not affect the actual sample, just this instance. If none of the parameters are specified, then the original values given the sample when it was created are used.
By using the LOOP parameter, you instruct SpecBAS to loop the sample indefinitely. Finally, you can opt to create a CHANNEL for your sample, which allows you to control the sample’s rate, volume and panning while it is playing. The CHANNEL parameter requires a numeric variable to hold the channel identifier for use with the CHANNEL commands.
SAMPLE ERASE numexpr
Deletes the sample from memory, and frees the bank associated with it.
SAMPLE RATE numexpr
SAMPLE VOLUME numexpr
SAMPLE PAN numexpr
These commands all do the same job that the parameters in SAMPLE PLAY do (and take the same values), but affect the sample permanently. If the sample is currently playing, these commands will not take effect until a new instance of the sample is played.
CHANNEL PAUSE numexpr
CHANNEL RESUME numexpr
Pauses and resumes a playing channel, created by the SAMPLE PLAY command with the CHANNEL parameter specified. This is particularly useful for samples that loop. If the sample has finished playing (and thus ended the channel’s usefulness), then an error will be generated when trying to access the channel.
CHANNEL RATE channelID,rate
CHANNEL VOLUME channelID,volume
CHANNEL PAN channelID,pan
These commands will change the way the channel specified sounds. You can alter the rate in Hz which will alter the pitch (though also the speed at which it plays), the voume (0 to 1 as for samples) and the panning (-1 to 1, again as for samples). None of these commands make permanent changes to the sample being played.
CHANNEL SEEK channelID, Position
Changes the play position of the channel, allowing you to rewind or fast-forward. The parameter is specified in bytes, and is rounded to the nearest sample.
CHANNEL STOP numexpr
Stops a currently playing channel, and frees it from memory. You will not be able to work with this channel after using this command.
MUSIC PLAY {filename$|BankID} [PAUSE] [LOOP]
Commences playback (if desired) of a music file – can be .MOD, .S3M, .MO3, .XM, .IT, .MTM, .UMX, .MP3, .MP2, .OGG, .WAV, .AIFF, .MP1 format. Beware that older MOD files with only 15 samples will fail to be recognised, and will need to be converted by a soundtracker program such as Milkytracker on PC, or Protracker under Amiga emulation.
Specifying the PAUSE parameter will load the music file ready for playing, but keep it paused until you’re ready to resume with the MUSIC RESUME command. The LOOP parameter ensures that the music loops around when it finishes playing. If a music track reaches the end and doesn’t loop, then it will be freed and the music will need to be reloaded.
MUSIC PAUSE
MUSIC RESUME

Pauses and resumes the currently playing music file.
MUSIC STOP

Stops the currently playing music file and frees its resources.
MUSIC SEEK numexpr

Changes the currently loaded music file’s play position, in seconds.
MUSIC VOLUME numexpr

Changes the volume of the music playing, from 0 (silence) to 1 (full volume).
BEEP duration,{pitch|pitch$} [FORMAT wavetype,attack,decay,sustain,release,noise,rough]
This command produces a tone of the specified duration (in seconds) at the specified pitch – the number of semitones above middle-C. Instead of a semitone value for the pitch, you can specify a string. This takes the format of a note name (A-G or a-g), followed by an optional sharp (“#”) or flat (“$”), and an optional octave number from 0 to 9. You probably can’t hear octave 0. For example:
BEEP 1,”c#3”
Will play one second of C in the third octave. A capital letter shifts up one octave, thus C3 is the same as c4. Some notes can’t be sharpened or flattened, and an error occurs if you choose the wrong one. The default octave is octave 5.
You can optionally specify a FORMAT for the wave:
wavetype – one of four types specified by 0, 1, 2 and 3. 0 for a square wave (the default type to maintain compatibility with the ZX Spectrum’s BEEP command), 1 for a sine wave, which is softer than the square wave, 2 for the sawtooth wave which sounds quite harsh, and 3 for the triangle wave which sounds similar to the sawtooth in harshness and the sine in softness.
Attack – the time in seconds that the BEEP command spends climbing initially from zero volume to full volume.
Decay – time in seconds that the wave spends decreasing volume to match the sustain volume.
Sustain – the volume level that the rest of the tone is played at, from 0 to 1. Even if you specify the other parameters as zero, you must specify a Sustain volume, or silence will result.
Release – the time spent in seconds fading the sound out towards zero volume at the end.
If Attack + Decay + Release is longer than the Duration parameter then an error occurs.
Finally you can specify a Noise and a Roughness parameter. Zero will add no noise or roughness (a pure tone), Noise 1 will replace the sound with pure random noise. This is useful, especially with the ADSR envelope above to produce percussion effects or explosions/gunshots. 0.5 will blend half noise with half tone. Roughness will add a random offset to the frequency of each phase in the waveform, which can produce interesting effects and which is affected by pitch, unlike the noise parameter. Perceptually, roughness tends to lower the pitch of the sound somewhat.
VOL (function)
returns the current volume set by the VOLUME command.
MUSICPOS (function)

returns the position of the currently playing music file (or memory bank) in seconds.
MUSICLEN (function)

returns the length of the current music file or memory bank in seconds.
Miscellaneous commands
LIST [[n] [TO m]]
Lists the current program to the screen in a similar format to the spectrum. You can specify either a range of lines (LIST n TO m), just a starting line (LIST n), or just a finishing line (LIST TO m). Specifying no lines at all means “list the entire program”.
DEBUG linenumber[,statement]
This command will display a list of “codes” which a line or statement is converted into prior to being executed by SpecBAS. Entering a line is a three-step process – the user types in their BASIC code, and SpecBAS then renders that code into “tokens” which represent the words used. Those tokens are then processed into “stacks” of instructions in Reverse Polish Notation, which are later executed one at a time. You can see the results of this process with the DEBUG command. This can be useful when writing optimal code – in general, the less codes displayed for a line, the faster it will execute (though the keywords themselves may take longer than other keywords depending on the amount of work they have to do). This command is used extensively when creating optimisation routines as SpecBAS is developed, and is included as a curiosity for the interested user.
DELETE n TO m
Deletes lines from the program, from “n” through to “m”. Use with care.
RENUMBER [[n TO m] LINE start STEP st]
This command will renumber the program in memory. You can specify a range (n to m) of lines to be renumbered, and the line to start at (LINE start) and the increment (STEP st). Any lines that, as a result of renumbering, gain the same line number as other lines will overwrite those lines. The default LINE and STEP values are 10, so you can just issue the RENUMBER command to quickly renumber the entire program starting at line 10 and working up in steps of 10. Any GO TO and GO SUB commands that use line numbers (ie, not calculated or label jumps) will be updated to point to the correct lines.
REM remarks
Does nothing; is present purely to allow you to insert comments into your program. The entire line from that statement onwards is ignored.
PAUSE numexpr
Halts program execution for a period specified, in frames (50ths of a second). PAUSE 0 will halt forever, until a key is pressed. A keypress will always cut a PAUSE short.
WAIT [SCREEN] numexpr
Like PAUSE, halts execution for a period in milliseconds. 20 milliseconds = 1 frame. Minimum of 1 millisecond pause, but will depend on your host OS as to how accurate the delay will be below a typical minimum (Windows is inaccurate below about 10ms). WAIT cannot be interrupted by a keypress. The optional SCREEN parameter instructs WAIT to pause for at least the number of milliseconds specified, but not to return until the current screen update has completed. This is useful for making smooth animations with variable window and sprite counts, for example.
OPTION strexpr,numexpr|strexpr
OPTION allows you to set system variables. This command should be used with extreme care, as you will be able to alter the way that SpecBAS interfaces with the rest of the host operating system and hardware. YOU COULD VERY EASILY CRASH YOUR SYSTEM AND CAUSE DATA LOSS/CORRUPTION WITH THIS COMMAND. So go carefully!
The first parameter is the name of the sysvar you want to change, and the second is the value you wish to pass. Most Sysvars are numeric in form, but some exist as strings and Boolean values, and even one array of values (which is represented as a string). See Appendix A for a complete list of system variables.
YIELD
Takes no parameters, and simply gives up SpecBAS’s current timeslice to the host OS. Tight loops in SpecBAS on a single-core PC can cause delays to other processes and this command will allow them to execute.
OUT stream-id|var$|SCREEN

This command redirects all text output to either a previously-created stream, or a
string variable. OUT can be embedded in a PRINT or TEXT command, like an INK or
PAPER command. OUT SCREEN redirects text to the screen as usual.
QUIT

Quits SpecBAS.
Miscellaneous Functions
ERRORNUM
ERRORLINE
ERRORSTATEMENT
These functions return information on the previous error – the error code, the line it occurred on and the statement within that line where your code failed.
TIME
Returns the current time and date as a decimal number – the integer (the part to the left of the decimal point) represents the number of days since 30/12/1899, and the fractional part (that to the right of the decimal point) is the portion of a 24 hour day that has elapsed – if this part was .5, then the time would be 12 noon.
YEAR time
MONTH time
DAY time
Returns the Day number (1 to 28/29/30/31) of the month, or the month number (1 to 12) or the Year based on the numeric time value passed (see above for the time format).
MONTH$ time
DAY$ time
Returns the textual versions of the day (Monday, Wednesday etc) and month (January, February etc) based on the time value supplied.
HOUR time
MINUTES time
SECONDS time
Returns the Hour, Minute and Second values from the time specified. The Hour will be in 24 hour format, or 0 to 23.
MSECS

Returns the current system time in milliseconds – a high resolution time. This is
stored as a 32bit value, so will wrap every 49 days or so.
TIME$(numexpr,strexpr)
DATE$(numexpr,strexpr)

Formats a time (as returned by the TIME function) into a human-readable format.
There are a number of options for each – as an example:
PRINT DATE$(TIME,"mm/dd/yyyy") which would return say, "18/08/2014".
PRINT DATE$(TIME,"d$ the e$ of m$, y$") which would return "Monday the eighteenth of August, twenty-fourteen"

PRINT TIME$(TIME,"hh:mm:ss") returns "19:00:18"
PRINT TIME$(TIME,"t$ m$ p$ and s$ \second\s") returns "seven o'clock PM and 18 seconds"
The options are:
hh - two-number hour (24-hour clock).
h - one number hour (12-hour clock), with two if necessary.
h$ - full hour name.
t$ - hour in text (12 hour clock)
mm, m, m$ - as above but for minutes
ss, s, s$ - as above but for seconds
p$ - AM or PM

For DATE$, the same syntax applies but extracts the date from the value supplied and then uses these options for the text:
dd - day in numeric format
ddd - day in three-letter format
d$ - full day of the week
e$ - textual numeric day
sf - suffix - "st", "nd", "rd", "th" suffix for numeric days
mm - month in numeric format
mmm - month in three-letter format
m$ - full name of the month
yy - two-number year
yyyy - four-number year
y$ - full english year (nineteen seventy-three etc)

Any character not in that list which is encountered is added to the output (which is useful for separators etc) and any character can be “escaped” with a \ (backslash) character.
GETOPT/GETOPT$ strexpr
Returns the contents of the specified system variable. See Appendix A for details of the system variables available to you.
Appendix A – The System Variables
System variables are listed by category, and are denoted the following types:
str
This sysvar returns and accepts a string of characters or bytes.
bool
This sysvar accepts either 1 or 0 (True or False).
int
This sysvar accepts whole numbers, positive or negative.
byte
This sysvar accepts numbers in the range 0 to 255.
lword
This sysvar accepts numbers that are positive only.
ptr
This sysvar contains a pointer to a memory location. Use with Care!
float
This sysvar accepts any number.
str
BUILDSTR Build number of SpecBAS
str
HARDWARE The platform that SpecBAS is running on.
str
PROGNAME Name of current program
These types are those chosen at design-time when SpecBAS was written and may not be optimal, but there you go. A note should be made about the KEYSTATE sysvar – it returns and accepts a string, of 256 characters. Each character represents one of the keycode from Appendix B. When writing this string back into the sysvar, it must be 256 bytes in length. Unlikely to be useful when written.
Screen display variables
bool
SPFULLSCREEN True if we're in Fullscreen mode.
ptr
DISPLAYPOINTER A pointer to the display - the one external to SpecOS.
int
DISPLAYWIDTH The current display surface width
int
DISPLAYHEIGHT The current display surface height
int
DISABLECOUNT Number of calls to disable the display
int
SCMINX, SCMINY, SCMAXX, SCMAXY "Dirty rectangle" display coordinates for the SP_Composite routine
int
NUMSPRITES Global number of sprites defined.
bool
SCREENLOCK True if the screen is locked and cannot be redrawn.
lword
FRAMES Elapsed frame counter, 50Hz
int
FLASHSTATE 1 or 0 for the cursor flash
float
FPS Frames per second - default 50.
int
FRAME_MS Frame size in Ms.
str
TEMPDIR the location of the TEMP directory in the host filesystem.
ptr
SCREENPOINTER A pointer to the current drawing surface
int
SCREENBANK The bank ID number of the current screen being drawn to
int
SCREENWIDTH The current drawing surface width
int
SCREENHEIGHT The current drawing surface height
int
SCREENX The current drawing surface X position
int
SCREENY The current drawing surface Y position
int
SCREENID The WindowID of the current drawing surface.
ptr
WINDOWPOINTER Pointer to the SP_Window_Info structure
ptr
SCRBANKPOINTER As above, but for the display bank.
int
CPAPER Current PAPER set by the PAPER command
int
CINK Current INK set by the INK command
int
CINVERSE Current state of the INVERSE ... state?
int
COVER Current state of the OVER flag
int
T_PAPER Temporary PAPER used by PRINT and INPUT colour items
int
T_INK Temporary INK
int
T_INVERSE Temporary INVERSE
int
T_OVER Temporary OVER
int
DRPOSX The x-coordinate of the last point plotted
int
DRPOSY The y-coordinate of the last point plotted
float
DRHEADING The heading of the "turtle", in whichever angular system is in use (deg, rad)
int
XORG The x-coordinate (in screen space) of the graphics origin
int
YORG As above, but for y.
int
PRPOSX The X-Coordinate of the PRINT position
int
PRPOSY The Y Coordinate of the PRINT position
int
TABSIZE The size in characters of tab stops, starting at the far left of the screen.
str
LOWERSAVE Storage so that the Scroll? prompt doesn't destroy the screen.
int
SCROLLCNT The scroll counter - when this reaches the bottom of the screen, the "Scroll?" message is triggered.
Mouse variables
int
MOUSEX The current mouse x-coordinate
int
MOUSEY The current mouse y-coordinate
int
MOUSEWHEEL The current mouse wheel position.
lword
MOUSEBTN The current state of the mouse buttons - bits 0,1,2 for left/right/middle
int
M_DELTAX Amount the mouse has moved in the X direction
int
M_DELTAY Amount the mouse has moved in the Y direction
bool
MOUSEVISIBLE Is the mouse pointer visible?
str
MOUSEIMAGE The image that the mouse pointer covers
int
MOUSESTOREX, MOUSESTOREY The last known mouse coordinates for restoring the display under the pointer.
bool
MOUSEISGRAPHIC Is the mouse image a graphic bank?
str
MOUSESTR If not, then this string holds the mouse pointer image.
int
MOUSEHSX, MOUSEHSY Mouse hotspot offset coordinates
Pandora-specific variables
These variables are only of any use to a user running PandaBAS, as the hardware that they pertain to only exists on that platform
int
NUBMODE1 The assigned mode of the leftmost analog nub, 0 to 3
int
NUBMODE2 The mode of the second (rightmost) analog nub.
System state and interpreter variables
int
NUMBANKS The number of memory banks in use.
int
NUMSTREAMS The number of streams allocated
int
SYSTEMSTATE What the system is doing now - SS_INPUT, SS_PAUSE or SS_INTERPRET (0, 1, 2)
int
LASTERROR The last error code produced - 0 if the line executed successfully.
int
LASTERRORLINE The line that the last error occurred on
int
LASTERRORSTATEMENT The statement within the line that the last error occurred on
int
CONTLINE Line that CONTINUE jumps to
int
CONTSTATEMENT Statement that CONTINUE jumps to
str
COMMAND_TOKENS The current command line.
int
PROGSTATE Program state - running, or editing.
int
NXTLINE The next line to be executed. If 0, then stop.
int
NXTSTATEMENT The statement to be executed. Used by the RETURN and NEXT commands.
bool
AUTOSAVE Automatically save your work after each direct command/Line Entry?
str
HOMEFOLDER The folder that specbas lives in
bool
QUITMSG Signals that the interpreter is to quit when true. Likely to crash the interpreter if changed.
Font variables
int
SYSFONT The index of the system font - cannot be deleted.
int
EDITORFONT The index of the editor font.
int
FONTBANKID The ID number of the bank to use as the current font.
int
FONTWIDTH The Width of the current font
int
FONTHEIGHT The Height of the current font
int
FONTTRANSPARENT The colour index to be used as a transparent colour in the current font
int
FONTTYPE The type of font being used (graphical or mono)
INPUT variables
str
INPUTLINE The current line of input
byte
INPUTCSR1, INPUTCSR2 The two colours used by the INPUT cursor
int
INPUTPOSX, INPUTPOSY Print position prior to calling an INPUT.
bool
INPUTERROR Was there an error in INPUT? Set if yes.
bool
INPUTERRORHANDLED Are errors in INPUT handled by the system?
float
INPUTERRVAL Value to return in case of error in INPUT in a number
str
INFORMAT The INPUT command's current MASK.
str
INPUTBACK Backup (in a string!) of the window used by INPUT
bool
ERRORSTATE Indicates an error state in the edit line
int
LINK The colour of the INK used in the lower screen for editing. Not user-changeable.
DEBUGGING variables
str
DBGSTR Debugging purposes
lword
DEBUGVAL A debugging value used when creating SpecBAS.
bool
LOGGING enable debug logging?
Keyboard variables
int
CAPSLOCK State of the CAPSLOCK key
int
NUMLOCK State of the NUMLOCK key
bool
INSERT State of the Insert/Overwrite flag
array
KEYSTATE The state of the keyboard
byte
LASTKEY The last key that went down. 0 if key in previous LASTKEY goes up.
lword
REPDEL The delay in frames before a key repeats when held down
lword
REPPER Delay between successive repeats of a key that is held down
lword
REPCOUNT The current counter for key repeats
Sound variables
float
VOLUME The current volume of sounds in SpecBAS
bool
MP3AVAILABLE Libraries for MP3 decoding are available
bool
MODAVAILABLE Libraries for MOD/S3M/IT/XM decoding are available
bool
FLACAVAILABLE Libraries for decoding FLAC files are available
bool
OGGAVAILABLE Libraries for decoding OGG files are available
lword
MAXRATE Maximum sample rate supported
lword
MINRATE Minimum sample rate supported
lword
MUSICHANDLE The handle to the currently loaded music file. 0 if no music loaded.
bool
MUSICISSTREAM Is the music currently loaded a stream?
int
CLICKBANK The Bank ID of the Keyclick sample
int
OKSNDBANK The Bank ID of the OK Beep sample
int
ERRSNDBANK The Bank ID of the Error Beep sample
Editor variables
bool
PROGCHANGED Set if the program in memory has changed.
str
EDITLINE The current edit line
bool
EDITERROR True if the syntax check caught an editing error
int
EDITERRORPOS Position in the EDITLINE aString of the error
int
PROGLINE The currently selected line in the listing
int
SHOWLINE The top line of an AUTOLIST
bool
SPLITSTATEMENTS When true, statements are split at “:” marks
bool
SPLITREMS When true, REM statements are wordwrapped to the editor window.
int
CURSORPOS The position within the edit line of the cursor during editing.
int
CURSORX The X Position of the cursor.
int
CURSORY The Y Position of the cursor - used to quickly redraw the cursor on FLASH state-change.
byte
CURSORCHAR The character that is currently being covered by the cursor.
byte
CURSORFG The foreground colour of the cursor
byte
CURSORBG The background colour of the cursor. Flipped while flashing.
int
LISTWINDOW The Window Index of the Listing window
int
COMMANDWINDOW The Window ID of the direct command window
float
LISTTOPINDEX The topindex of the list window - not the line, but the text index
float
LISTLEFTINDEX The Leftmost column in the list window
int
LISTSELLINE The currently selected linenumber in the LIST window
int
LISTLINECOUNT Number of lines in the listing, counting statements.
int
LISTCOLCOUNT The maximum number of characters the listing's longest line holds
int
LISTVISLINES The number of lines visible in the listing window.
int
LISTVISCOLS Number of characters visible per line
int
LISTWINX, LISTWINY, LISTWINW, LISTWINH The Listing window metrics
bool
LISTVSCUPENABLED Is the list window's vertical scrollbar "up" arrow enabled?
int
LISTVSCUPTLX, LISTVSCUPTLY, LISTVSCUPBRX, LISTVSCUPBRY The vertical scrollbar in the listing window's "up" arrow's bounding box
bool
LISTVSCDNENABLED Is the list window's vertical scrollbar "down" arrow enabled?
int
LISTVSCDNTLX, LISTVSCDNTLY, LISTVSCDNBRX, LISTVSCDNBRY The vertical scrollbar in the listing window's "down" arrow's bounding box
bool
LISTVSTRENABLED Is the tracking region of the list window's vertical scrollbar enabled?
int
LISTVSTRTLX, LISTVSTRTLY, LISTVSTRBRX, LISTVSTRBRY The list window's vertical scrollbar track region
int
LISTVTHP The vertical position of the listing window's vertical scrollbar thumb.
int
LISTVTHS The physical size of the listing window's vertical scrollbar thumb.
int
LISTVSCTRKH The height of the vertical scrollbar's trackbar
bool
LISTHSCUPENABLED Is the list window's horizontal scrollbar "up" arrow enabled?
int
LISTHSCUPTLX, LISTHSCUPTLY, LISTHSCUPBRX, LISTHSCUPBRY The horizontal scrollbar in the listing window's "up" arrow's bounding box
bool
LISTHSCDNENABLED Is the list window's horizontal scrollbar "down" arrow enabled?
int
LISTHSCDNTLX, LISTHSCDNTLY,
LISTHSCDNBRX, LISTHSCDNBRY The horizontal scrollbar in the listing window's "down" arrow's bounding box
int
LISTHSTRENABLED Is the tracking region of the list window's horizontal scrollbar enabled?
int
LISTHSTRTLX, LISTHSTRTLY, LISTHSTRBRX, LISTHSTRBRY The list window's horizontal scrollbar track region
int
LISTHTHP The horizontal position of the listing window's horizontal scrollbar thumb.
int
LISTHTHS The physical size of the listing window's horizontal scrollbar thumb.
int
LISTSIZETLX, LISTSIZETLY, LISTSIZEBRX, LISTSIZEBRY The list window's sizegrip bounding box
bool
CCOMMANDWINDOW True when the command window exists
bool
CLISTWINDOW True when the LIST window exists.
int
COMMANDWINX, COMMANDWINY, COMMANDWINW, COMMANDWINH The Command window metrics
int
COMMANDSIZETLX,COMMANDSIZETLY,COMMANDSIZEBRX, COMMANDSIZEBRY The direct command window's sizegrip bounding box
bool
SHOWLIST When True, the listing window will be displayed.
Maths variables
int
MATHMODE 0 - Radians, 1 – Degrees
Menu variables
int
MENUBARPAPER The background colour of any bar menus. In $00RRGGBB
format.
int
MENUBARINK The text colour of menu items on a menu bar
int
MENUBAROUTLINE The outline colour of any menu bars
int
MENUPAPER The background colour of submenus
int
MENUINK The text colour of items in a submenu
int
MENUDISABLEDINK Text colour of a disabled menu item
int
MENUOUTLINE The outline colour of a submenu
int
MENUHLOUTLINE The colour of the selected item’s outline
int
MENUHIGHLIGHT The paper colour of a selected item
int
MENUSEP The colour of a separator line
bool
MENUSHOWING True (1) if the menu is currently visible, else False (0).

Appendix B – Constants and keycodes
PI

3.1415926535897932385
FONT_MONO

0
FONT_COLOUR

1
KEY_BACKSPACE

8
KEY_TAB

9
KEY_RETURN

13
KEY_SHIFT

16
KEY_CONTROL

17
KEY_MENU

18
KEY_PAUSE

19
KEY_CAPS_LOCK

20
KEY_ESCAPE

27
KEY_SPACE

32
KEY_PG_UP

33
KEY_PG_DOWN

34
KEY_END

35
KEY_HOME

36
KEY_LEFT

37
KEY_UP

38
KEY_RIGHT

39
KEY_DOWN

40
KEY_PRINT

42
KEY_INSERT

45
KEY_DELETE

46
KEY_0

48
KEY_1

49
KEY_2

50
KEY_3

51
KEY_4

52
KEY_5

53
KEY_6

54
KEY_7

55
KEY_8

56
KEY_9

57
KEY_A

65
KEY_B

66
KEY_C

67
KEY_D

68
KEY_E

69
KEY_F

70
KEY_G

71
KEY_H

72
KEY_I

73
KEY_J

74
KEY_K

75
KEY_L

76
KEY_M

77
KEY_N

78
KEY_O

79
KEY_P

80
KEY_Q

81
KEY_R

82
KEY_S

83
KEY_T

84
KEY_U

85
KEY_V

86
KEY_W

87
KEY_X

88
KEY_Y

89
KEY_Z

90
KEY_LWIN

91
KEY_RWIN

92
KEY_NUMPAD_0

96
KEY_NUMPAD_1

97
KEY_NUMPAD_2

98
KEY_NUMPAD_3

99
KEY_NUMPAD_4

100
KEY_NUMPAD_5

101
KEY_NUMPAD_6

102
KEY_NUMPAD_7

103
KEY_NUMPAD_8

104
KEY_NUMPAD_9

105
KEY_MULTIPLY

106
KEY_ADD

107
KEY_SEPARATOR

108
KEY_SUBTRACT

109
KEY_DECIMAL

110
KEY_DIVIDE

111
KEY_F1

112
KEY_F2

113
KEY_F3

114
KEY_F4

115
KEY_F5

116
KEY_F6

117
KEY_F7

118
KEY_F8

119
KEY_F9

120
KEY_F10

121
KEY_F11

122
KEY_F12

123
KEY_NUM_LOCK

144
KEY_SCROLL_LOCK
145
dtNONE

0
dtRANDOM

1
dtDIAGONAL5

2
dtDIAGONAL9

3
dtCLUSTERED

4
dtDISPERSED

5
dtHALFTONE

6
dtORDERED16

7
dtORDERED64

8
nubMOUSE

0
nubSTICK

1
nubSCROLL

2
nubBUTTONS

3

