RASM: Roudoudou’s Z80 Assembler V1.3

Edouard BERGE (Roudoudou)
December 12, 2020

Contents
1 Introduction 5
1.1 Features e 5
2 Usage 6
2.1 Command line e e 6
2.2 Exported file names Lo 6
2.3 Symbol exports e e 6
24 Including files 7
2.5 Dependencies options.o e 7
2.6 Compatibility options 8
2.7 Debugoptions 8
2.8 Moreoptions 8
3 Source code format 9
3.1 Comments e e e e e e e e e e 9
3.2 Labels o 9
3.3 Z80 Imstructions e 9
3.3.1 IX,IY registers L 9
3.3.2 Undocumented opcodes syntax 10
3.3.3 Shorcuts e e 10
3.4 Memory related directives Lo 10
3.4.1 ORG Directive o . e 10
3.4.2 ALIGN . . o e 11
3.4.3 LIMIT e e 11
3.4.4 PROTECT e e e 11
3.5 Datadefinition 11
3.5.1 DB,DEFB, DM, DEFM 11
3.5.2 DEFW . . e 12
3.5.3 DEFI . . . e 12
354 DEFR e e 12
3.5.5 DEFS e 12
3.5.6 STR e 13
3.5.7 CHARSET e 13
3.5.8 $O0perator 13

RASM

4 Expressions
4.1 Aliases and Variables e
4.1.1 Constants or Alias e e
4.1.2 Variables s
4.2 Literal values e
4.2.1 Allowed chars
4.3 Operators e e e
4.4 Operators priorities e

5 Preprocessor
5.1 Debugging and asserting Lo
5.1.1 PRINT e
5.1.2 FAIL e
5.1.3 STOP e
5.1.4 NOEXPORT e
5.2 Conditionnal code directives
5.2.1 ASSERT e
5.2.2 TIF, IFNOT e
5.2.3 IFDEF,IFNDEF
524 UNDEF e
5.2.5 IFUSED, IFNUSED e
5.2.6 SWITCH e
5.3 Loops and Macros L L
5.3.1 REPEAT
5.3.2 WHILE, WEND
5.3.3 Macros e e e
5.4 Labels and modules
5.4.1 Locallabels e
5.4.2 Proximity labels
5.4.3 Mixing different kinds of labelso o oo
5.44 Modules e e
B.5 Structures o e e e e e
5.5.1 STRUCT e
5.5.2 SIZEOF e
5.5.3 STRUCT Array et e e
5.6 Duration of abloc e

6 Crunch and import directives
6.1 File Import e
6.1.1 INCLUDE. e
6.1.2 INCBIN e
6.1.3 Multiple files importo
6.1.4 Audio Files e
6.2 Crunching e
6.2.1 Crunched Section
6.2.2 Crunched Binaries L L
6.2.3 SUMMEM e
6.2.4 XORMEM e

RASM

7 Amstrad CPC Specific features

7.1 Bank Management L L e
7.1.1 BANK Prefix o e
7.1.2 PAGE Prefix e e
7.1.3 PAGESET Prefix

7.2 AMSDOS headers and DSK files
7.2.1 AMSDOS Header
7.2.2 SAVE directive

7.3 Snapshot and Cartridges e
7.3.1 BUILDSNA e
7.3.2 SETCPC e
7.3.3 SETCRTC e
7.3.4 SETSNA . . e
7.3.5 BANK . . . e e
7.3.6 RUN e

7.4 Specific Directives for snapshot images L oo
7.4.1 BANKSET e
7.4.2 BREAKPOINT
7.4.3 Exportoption.

7.5 CPCH Colors o e
751 GETR,GET.G, GETB
7.5.2 SETR,SET.G,SETB e

7.6 Deprecated Directives L e
7.6.1 NOCODE e
7.6.2 WRITE DIRECT e e e e
7.6.3 LIST, NOLIST,LET et

ZX Specific features

8.1 HOBETA Directive o e e e e e e e e e e

8.2 Bank Selection e e e e
8.2.1 BUILDZX Directive e

8.3 Options e

Compiling and Embedding

9.1 Building RASM e
9.1.1 Linux e
9.1.2 Windows (Visual Studio)
9.1.3 Dos/Windows 32 (Watcom)o vt
9.1.4 MacOS e
9.1.5 MorphOS e

9.2 Embedding RASM e
9.2.1 Errors and Symbols o

Syntactic coloration
A1 Syntax color with VIM

Z80 Opcodes

B.1 Main Instructions
B.2 Extended instructions (ED) o
B.3 Bitinstructions (CB) L
B.4 IX instructions (DD)
B.5 IX bit instructions (DDCB) e

29
29
29
29
29
30
30
30
30
31
31
31
31
32
33
33
33
33
33
33
33
34
34
34
34
34

35
35
35
35
35

36
36
36
36
36
36
36
36
37

RASM

B.6 IY instructions (FD)
B.7 IY bit instructions (FDCB)

C Z80 Opcodes Duration on CPC

D Licenses

RASM

1 Introduction

During the making of my first big demo, CRTC?, available assemblers on CPC were too slow and too
limited for my needs: The source code consisted in 250’000 words (out of comments), 35’000 labels
and 60’000 expressions. I needed a damn fast assembler with cartridge management, memory bank
management and integrated crunched code and data sections, so i had to write a new assembler.

It was not my first attempt to write such a tool: 18 years ago, i had already written a small assembler.
It was so limited, i couldn’t use it for CRTC?, but i've kept some aspects of its design, particularly
the fact that the process of assembling was mono-pass.

RASM uses efficient algorithmic patterns, such as merkel trees, caches, and grouped memory allocation.
Thanks to its linear conception, performances in real conditions are really high, it’s particularly fast,
even with huge projects.

Nowadays RASM is used on big projects such as:

e Ghost’n Goblins by Golem13 - still in development, for CPC+ architectures.
e Arkos Tracker II by Targhan (embedded in the software)

[t
Y

Features

Ultra-fast compilation

common compressors included

binary, snapshot, floppy, cartridge export

symbols import /export

overwriting control

unlimited memory spaces where labels are shared

dedicated directives for memory/ROM management

all Z80 instructions are supported

macros, conditionnal code, unlimited loops, local labels, switch/case
double precision calculation with correct rounding

audio file import, with automatic conversion into DMA lists (CPC+)
optionnal compatibility with Maxam or AS80

code duration evaluation

Rasm is licenced under MIT licence (see Annex D for the complete list of licenses).

This documentation is maintained by Stephane Sikora, please send any feedback to
sikoogle+rasm@gmail.com .

RASM

2 Usage

RASM is meant to be convenient to use. It selects automatically the correct file format (plan binary,
snaphost or cartridge file)) depending on the selected ROMSs, give a consistent name to generated files,
looks for files in relatives path, allows multiple origin (ORG) directives, but will detect overlapping
code blocs, and so on...

RASM pre-processor not only performs some checks (valid characters, strings), it also converts some
operators into their C equivalent (for example XOR, AND,OR,MOD which are used by Maxam), so you can
indiferently use AND or & in your expressions. And last, but not least, it is possible to use conditional
expressions in order to change the way your program is assembled (like with C preprocesser), and you
can even define macros and data structures!

2.1 Command line

Usage:

RASM.exe <file to assemble> [options]

Without any option,
rasm.exe myfile.asm

produces rasmoutput.bin file.

2.2 Exported file names
These options are used for changing the name of the files produced by RASM:

e o <file radix>: set a common name for each output file, disregarding its type (.bin, .sym, ...).
The default value is “RASMoutput”

e -ob <binary filename>: set the full filename for automatic binary output.
e -0s <symbol filename>: set the full filename for symbol output.
e -oa : generates output files (cpr,bin,sna) using the same name as the input source file

e -no : disable file output.

2.3 Symbol exports

Symbols such as label’s addresses, constants, can be exported in a .sym file, using different formats.
For example, it can be useful for debugging a program with Winape.

e -s: export symbols in RASM format

e -sw : export symbols in Winape format
e -sp : export symbols in Pasmo format
e sl : also export local labels.

e -sv : also export variables.

e -sq : also export EQU aliases.

e -sx : export for ZX emulators, where the bank is printed : (<bank>:<adresse>)

RASM

e -sa : export all symbols (same as -sl -sv -sq)

Example:

RASM.exe test -o grouik -s
Pre-processing [test.asm]

Assembling

Write binary file grouik.bin (25 bytes)
Write symbol file grouik.sym (10 bytes)

The symbol file looks like this:

LABEL1 #0 BO
LABEL2 #1 BO
LABEL3 #2 BO
LABEL4 #4 BO

With -sp option:

LABEL1 EQU 00000H
LABEL2 EQU 00001H
LABEL3 EQU 00002H
LABEL4 EQU 00004H

With -sw, symbols are exported in Winape format:

LABEL1 #0
LABEL2 #1
LABEL3 #2
LABEL4 #4

It is possible to disable symbol export for portion of codes with NOEXPORT directive.

2.4 Including files

Including source code or binary file can be achieved with INCBIN and READ directives. By default,
included files are searched in the local folder, paths are relative, but it is possible to specify one ore
more folder where to look for files. It is also possible to define or import symbols:

e -1 <include directory>: set include directory. Multiple options -I is possible. -1 <filename
>imports symbols in RASM, Pasmo or Winape format. You may import as many symbol file as
you want using this option multiple times

e -D <var>=<value>: With this option you can define a variable. For example -DF00=1 will
define F00° variable with value 1.

e -l <fichier label>: You can import labels from a file with this option. Various formats are
supported (RASM, Sjasm, Pasmo or Winape formats) and are automatically detected. This
option can be used many times.

RASM.exe test -1 importl.sym -1 import2.sym -1 import3.sym

2.5 Dependencies options
¢ -depend=make Export all dependencies in a single line (for makefile usage)
e -depend=list Export all dependencies, one per line (for other usage)

If a filename for binary output is set (-ob option), it will be added to the dependances list, in first
position.

RASM

2.6

2.7

Compatibility options
texttt-m : Maxam compatibility:
- unsigned 16 bit computation, with wrong rounding
- comparisons are done with equal (=) sign
- Operator priorities are simplified (see charts)
texttt-amper : Used with maxam mode (-m). All # used for encoding hexa numbers will be
replaced by & symbol.
texttt-ass : AS80 compatibility:
- 32 bits integer calculations with wrong rounding

- DEFB,DEFW ,DEFI or DEFR directives with more than one parameter use the address
of the first byte, when using $

- MACRO directive must be used after the name of the macro, and not before (see 5.3.3)

- Macro parameters are not protected by {}
texttt-uz : UZ80 compatibility:

- 32 bits integer calculations with wrong rounding

- macro parameters are not protected by

- MACRO directive must be used after the name of the macro
texttt-dams : DAMS compatibility:

- labels beginning by a dot are ignored

texttt-pasmo : PASMO compatibility:

- DEFB,DEFW ,DEFI or DEFR directives with more than one parameter use the address
of the first byte, when using $

Debug options

These options are useful in rare occasions, it can sometime help for tracking bugs:

2.8

-v : verbose mode, display stats

-void : enforce usage of (void) syntax for macros without parameter (?7?)

-wu : Display a warning when an alias, a variable or a label is declared, but not used
-d : verbose detailed pre-processing

-a : verbose detailed assembling

-n : display third parties licences

-xpr : for extended cartdidge export, generate additional files for every 512KB slot (?7)

More options

Additional options are useful for some architectures only. Export optios specific to the Amstrad CPC
(Snapshot and cartridge generation) are documented in paragraph 7.4.3. Also remember -help option,
which will display a complete list of all available command line arguments.

RASM

3 Source code format

RASM is meant to be easy to use, it offers some flexibility, concerning the syntax. For example:
e It’s useless to use indentation with Rasm, except for aesthetics purpose.
e There is no need for ’:” suffix for identifying labels, but it is allowed, it will simply be ignored.
¢ Windows and Unix file format are both supported.

e RASM is not case sensitive, the whole source code is converted into upper case, so don’t be
surprised if you see your code in upper cases in error messages.

Simply keep in mind you cannot use a reserved word (directive, register, Z80 instruction) as a label.
In this part,we’ll see general syntax of a z80 assembly file, as it can be commonly found in other
assemblers. In the next parts, we’ll see some specific aspects of RASM.

3.1 Comments

Rasm uses semicolons to start a comment: Any character after a semicolon (until then end of the line)
will be ignored. It also works possible to use C syntax, single line comments starting with a double
slash (//), and multi lines comments delimited by /* and */.

3.2 Labels

Labels are used for naming a specific memory adress.

1d HL,monlabel
call aFunction
aFunction:

ret

monlabel db O

We'll see special labels later in this document: Some labels can be defined as locals to a Loop or macro
(see local and proximity labels, 5.4.1). Also any label beginning with BRK or @BRK will generate a
BREAKPOINT. (see section 7.4.2).

3.3 Z80 Instructions

The complete Z80 instruction set is supported, including undocumented ones. See Appendix B for the
full opcode list.

3.3.1 IX, IY registers

IX and IY registers can be addressed as two 8 bit registers. For example, IX lower part can be addressed
indifferently with LX, IXL or XL, and higher part with HX, IXH or XH:

| 1d A,IXL
Also, complex instructions with IX and IY are written with this syntax:

res 0, (IX+d),A
bit 0, (IX+d),A
sll 0, (IX+d),A
rl 0, (IX+d),A
rr 0, (IX+d),A

RASM

3.3.2 Undocumented opcodes syntax

out (<byte>),a
in a, (<byte>)
in 0, (c)

in f, (c)

sll <register>
sll <registre>

3.3.3 Shorcuts

Rasm allows some shortcuts.
assembly code.

These are not real instrctions, but a convenient way to write shorter

e Multi-arg PUSH and POP

PUSH BC,DEHL. — PUSH BC: PUSH DE : PUSH HL
POP HL,DE,BC — POP HL : POP DE : POP BC

e NOP repetition
nop4 — nop: nop: nop : nop

e Complex LD

LD BC,BC — LDB,B:LDC,C

LD BC,DE — LDB,D:LD CE

LD BCHL — LDBH:LDCL

LD DE,BC — LD D,B:LD E,C

LD DEDE — LDD,D:LDEE

LDDEHL — LDDH:LDEL

LD HLBC — LD HB:LDL,C

LD HLDE — LDHD:LDLE

LD HL.HL — LD HH:LD L,L

e Complex LD with IX,IY

LD HL,(IX+n) — LD H,(IX4n+1) : LD L,(IX+n)

LD HL,(IY+n) — LD H,(IY+n+1) : LD L,(IY+n)

LD DE,(IX+n) — LD D,(IX+n+1) : LD E,(IX+n)

LD DE,(IY+n) — LD D,(IY+n+1): LD E,(IY+n)

LD BC,(IX41n) — LD B,(IX+n+1) : LD C,(IX4n)

LD BC,(IY4n) — LD B,(IY+n+1) : LD C,(IY4n)

LD (IX-+n), HL — LD (IX+n+1),H : LD (IX+n),L
D (IY+n),HL — LD (IY+n+1),H: LD (IY+n),L
D (IX-+n), DE ~ LD (IX+n+1),D : LD (IX+n),E
D (IY+n), DE — LD (IY+n+1),D : LD (IY+n),E
D (IX4n),BC — LD (IX+n+1),B:LD (IX+4n),C
D (IY+n),B — LD (IY+n+1),B : LD (IY+n),C

e Alternative syntax

EXA — EXAFAF

3.4 Memory related directives

ORG Directive

3.4.1

ORG <logical address>[,<physical address>]

10

RASM

ORG is used for locating assembled code to a specific address. This directive can be used multiple
times in the same memory space, but assembled memory blocs may not overlap. In that case, RASM
will produce an error message.

ORG #8000

RET

; bytecode output:
; #8000: #C9

Still, if you need to generate two or more pieces of code targetted for the same address, but physically
stored in a different place, you can use the second parameter. For example, in order to generate code
targetted for address #8000, but stored in #1000:

ORG #8000,#1000
label: JP label

; bytecode output:

; #1000: #C3,#00,#80

On Amstrad CPC, you also can write tagetted to the same adress, by defining a new memory space,
using BANK directive. (See section 7.3.5)

3.4.2 ALIGN

ALIGN <boundary>[,fill]

If the current memory address is not a multiple of the ’boundary’ parameter, it will be increased in
order to meet the alignment constraint. The gap between the current memory address and the aligned
one is filled by zeroes, except if the second parameter is specified. For example:

ORG #8001
ALIGN 2 ; align code on even address (#8002)
ALIGN 256,#55 ; align code on high byte (#8100)
; #8002-#80FF is filled with #55

3.4.3 LIMIT

LIMIT <address boundary>

By default, the upper address for locating code is set to 65535, but for some reason, you may need
to reduce thise value. Hoever if you want to protect a memory area zone, take a look at the PROTECT
directive below.

3.4.4 PROTECT

PROTECT <start address>,<end address>

This directive protects a memory zone, delimited by the two parameters, from writing.
3.5 Data definition

3.5.1 DB, DEFB, DM, DEFM

DEFB <valuel>[,<value2>,...]
DEFM <valuel>[,<value2>,...]

11

RASM

This directive handle one or more parameters and output bytes regarding of thoses parameters. The
value may be a literal value, a formula (the result will be rounded), or a string where each char will
output a byte. Following code will producte 'Roudoudou’ string. ("u’ char corresponds to ASCII code
#75) Example:

org #7500
label:
defb ’r’-’a’+’A’,’oudoud’,#6F,hi(label)

With character strings, it’s possible to use control characters, with

, just like in C syntax:

n

t

r

See CHARSET directive for altering the way strings are interpreted.
3.5.2 DEFW

DEFW, DW <valuel>[,<value2>,...]

This directive handles one or more parameters and output words (two bytes). Values may be literals,
formula, single char, but char strings are not allowed!
Example:

| DEFW mylabell,mylabel2,’a’+#100

3.5.3 DEFI

DEFI <valuel>[,<value2>,...]

This directive handles one or more parameters and output four bytes integers. Values may be literal
value, formula, single char, but not a string!
3.5.4 DEFR

DEFR <real numberi>[,<real number2>,...]

DEFR (or DR) directive handles one or more parameters and output AMSTRAD firmware compatible
real numbers (5 bytes)
Example:

| defr 5/12, 0.5, sin(90)

3.5.5 DEFS

DEFS, DS <repetition>[,<value>, [<repetition>,...]

This directive is used for repeating the same byte many times. If no output value is set, then zeroes
will be written. If repetition value is zero then nothing will be output. You can declare more than one
repetition sequences with only DEFS.

Examples:

defs 5,8,4,1 ; #08,#08,#08,#08,#08,#01,#01,#01,#01
defs 5,8,4 ; #08,#08,#08,#08,#08,#00,#00,#00,#00
defs 5 ; #00,#00,#00,#00,#00

12

RASM

3.5.6 STR
STR ’stringl’[,’string2’...]

Almost same directive as DEFB, except the very last char will have its 7th bit set to 1. Both lines will
output the same byte sequence:

str ’roudoudou’
defb ’roudoudo’,’u’+128

3.5.7 CHARSET

CHARSET

CHARSET ’string’,<value>
CHARSET <code>,<value>
CHARSET <start>,<end>,<value>

This directive allows to redefine quoted char values to be changed. There are 4 ways to use this
directive:

e ’string’ <value>: First char of the string will be transposed as <value>. The next char as
<value>-+1 and so on, until the end of the string.

e <code>,<value>: replaces char with ASCII code <code>by a char with ASCII value <value>.

o <start>,<end>,<value>: replaces the characters with ASCII values within the range [<start>;<end>]
by <value>,<value+1>, and so on.

e without parameter : Ignore any previous CHARSET directive: strings will stay unchanged.

For example, you can set a simple char redefinition:

CHARSET °’T’,’t’ ; ’T’ chars will be translated as ’t’
DEFB ’tT’ ; #74 #74

Or redefine consecutives chars in a range:

CHARSET ’A’,’Z’,’a’ ; Change all uppercases to their respective lowercases
DEFB ’abcdeABCDE’ ; #61,#62,#63,#64,#65,#61,#62,#63,#64,#65

You can also redefine non consecutives chars:

CHARSET ’turndiskheo ’,0
DEFB ’there is no turndisk’
;#00,#08,#09,#02,#0B,#05,#06,#0B,#03,#0A ,#0B,#00,#01,#02,#03,#04,#05,#06 ,#07

3.5.8 8 Operator

The symbols ($) refers to the current byte address. For example:

org #8000
defw $,$

is equivalent to:

13

RASM

| defw #8000,#8002

With AS80 compatibility mode it would produce the same output as:

| defw #8000,#8000

However, when used with ORG directive, $§ refers to the physical address, not the logical one:

ORG #8000,#1000

defw $; #8000 is written in #1000

ORG $; ORG considers the physical address (#1002)
defw $; #1002 is written in #1002

; bytecode output:

; #1000: #00,#80,#02,#10

14

RASM

4 Expressions

4.1 Aliases and Variables

EQU is a common way in assemblers to define constants in a convenient way. RASM also introduces
variables, which value can be changed during the assembling process. There is no limit in the number
of variables or alias that can be defined.

4.1.1 Constants or Alias

<alias> EQU <replacement string>

EQU directive allows to define aliases by associating a symbol with a value: any occurence of the symbol
will be replaced by the value. An alias cannot be changed once it has been changed, it’s a constant
value. There is an infinite recursivity check done for each alias declaration.

Example:

tabl EQU #8000
tab2 EQU tabl+#100
1d HL,tab2

4.1.2 Variables

An alias it cannot be changed, once it has been defined. However, it is possible to use variables with
RASM, with the following syntax:

myvar=>5
LET myvar=5 ; Winape compatible Variables are used for numeric values only.

You can define as many variables as you want. Some examples:

dep=0

repeat 16

1d (IX+dep),A
dep=dep+8
rend

ang=0

repeat 256

defb 127*sin(ang)
ang=ang+360/256
rend

4.2 Literal values
Rasm accepts these values in expressions:

e Decimal if the value begins with a digit.

Binary if the value begins with

Octal if the value begins with @.

e Hexadecimal if the value begins with #, $, Ox or ends with h.

ASCII value of a char, delimited by quotes.

15

RASM

e Value of a constant or a variable, referenced by its name, eventually prefixed with @’.

e Current address symbol ($)

All internal calculation are done with double precision floating point accumulator. A correct rounding
is done in the end for integer needs. If the evaluation leads to a computation error, the result will be

null.

Beware of the & char, it is reserved for AND operator.

4.2.1 Allowed chars

Between quotes, all standard ASCII characters are allowed. Quoted strings may contains escaped
chars: \t \n \r \f \v \b \O . Escaped characters are ignored when used with PRINT directive.

4.3 Operators

Rasm is using a simplified calculation engine with multiple priorities (like C language). Here is the list

of supported operations:

*
+

" or XOR
& AND
&&

<<

hi()
sin()
asin()
atan()
int ()
floor()
abs ()
InQ
exp()
<=

<

multiply /

addition —

logical Exclusive OR %% or MOD
Logical AND | OR

Boolean AND [l
Left shift (multiply by 2™) >>
get upper 8 bits of a word 100

sinus cos()
arg sinus acos()
arc-tangente

float to integer conversion frac()
rounds to the lower integer | ceil()
absolute value rnd ()
neperian logarithm log10()
exponent sqrt O
equals (= in Maxam mode) | ! = ou <>
lesser or equal >=
lesser >

4.4 Operators priorities

Lower is the prevalence, higher is the execution priority.

divide

subtraction

Modulo

Logical OR

Boolean OR

Right shift (divide by 2™)
get lower 8 bits of a words
cosinus

arc-cosinus

keeps fractional part of a float

ronds to the higher integer

Random number between 0 and n — 1

base 10 logarithm
square root

not equal

greater or equal
greater

Operators Rasm Prevalence Maxam Prevalence
() 0 0

! 1 464
x| % 2 464
+ - 3 464
<< >> 4 464
<<====>>!= 5 664
& AND 6 464
| OR 7 464
"~ XOR 8 464
&& 9 6128
Il 10 6128

16

RASM

5 Preprocessor

RASM preprocessor recognizes many directives.

When a directive has parameters, it must be separated by at least one space char:
Wrong syntax: ASSERT (4*myvar)

Correct syntax: ASSERT (4*myvar)

5.1 Debugging and asserting

5.1.1 PRINT

PRINT ’string’,<variable>,<expression>

Write text, variables or the result of evaluation of an expression during assembly.
By default, numerical values are formatted as floating point values, but you may use prefixes to change
this behaviour:

e {hex} Display in hexadecimal format. If the value is less than #FF two digits will be displayed.
If less than #FFFF, the display will be forced to 4 digits.

e {hex2}, {hex4}, {hex8} to force hex display with 2, 4 or 8 digits.

e {bin} Display a binary value. If the value is less than #FF 8 bits will be displayed. Otherwise if
it is less than #FFFF 16 bits will be printed. Any negative 32 bits value with all 16 upper bits
set to 1 will be displayed as a 16 bits value.

e {bin8},{binl6},{bin32} Force binary display with 8, 16 or 32 bits.
e {int} Display value as integer.

5.1.2 FAIL

FAIL ’string’,<variable>,<expression>

This directive is similar to PRINT, but it will also trigger an error and STOP assembling.

5.1.3 STOP

Stop assembling an do not generate any file.

5.1.4 NOEXPORT

NOEXPORT [Symbols]
ENOEXPORT [Symbols]

NOEXPORT directive disables symbol export. By default, it applies to all symbols (labels,variables,constants),
but it is possible to specify a subset of symbols. Symbol export can be re enabled (fully or partially)
with ENOEXPORT.

5.2 Conditionnal code directives

It is possible to use conditional directives with RASM, in a way similar to C preprocessor: it is possible
to change the assembled code, depending on some conditions. There is a basic rule when writing such
expressions: all variables used in it must be declared prior to the expression.

17

RASM

5.2.1 ASSERT

ASSERT <condition>[,text,text,text...]

Stop assembling if the condition test fails. In that case, and if some text is specified, it will be printed
on the console. Example:

assert mygenend-mygenstart<#100
assert mygenend-mygenstart<#100, ’code is too big’

5.2.2 IF, IFNOT

IF <condition> ... [ELSE ...] ENDIF

IF <condition> ... [ELSEIF <condition> ...] ENDIF
IFNOT <condition> ... [ELSE, ...] ENDIF

IFNOT <condition> ... [ELSEIF <condition> ...] ENDIF

As with C preprocesor, this directive can be used for enabling some portions of code, depending on a
condition. Example:

CODE_PRODUCTION=1
[...]

if CODE_PRODUCTION

or #8380

else

print ’test version’
endif

5.2.3 IFDEF, IFNDEF

IFDEF <variable or label> ... [ELSE ...] ENDIF
IFNDEF <variable or label> ... [ELSE ...] ENDIF

Both directives test variable or label existence.
5.2.4 UNDEF
UNDEF <variable>

Removes a variable definition. Any IFDEF condition with this variable will be evaluated as false. If
the variable doesn’t exist, this directive won’t do anything.

5.2.5 IFUSED, IFNUSED

IFUSED <variable or label> ... ENDIF
IFNUSED <variable or label> ... ENDIF

Both directives test variable or label usage, BEFORE the test.

5.2.6 SWITCH

SWITCH/CASE syntax mimics the C syntax. A SWITCH block is terminated by ENDSWITCH directive,and
each of its *CASE’ block with a >BREAK’. With RASM, you can use the same value in different cases,
allowing to write more complex cases. For example, this code will be produce 'BCE’ string:

18

RASM

myvar EQU 5

switch myvar
nop ; outside any case, will never be evaluated
case 3
defb A’
case 5
defb ’B’
case 7
defb ’C’
break
case 8
defb ’D’
case 5
defb ’E’
break
default
defb ’F’
endswitch

5.3 Loops and Macros
5.3.1 REPEAT

REPEAT <number of repetitions>[,counter] ... REND
REPEAT ... UNTIL <condition>

This directive repeats a block of instructions. You may fix a number of repetition or use condition-
nal mode with UNTIL. It is also possible to close such a bloc with ENDREP or ENDREPEAT, for Vasm
compatibility.

cnt=90
repeat
defb 64*sin(cnt)
cnt=cnt-4
until cnt<O0

In the case of a non conditional loop, it is possible to specify a variable which contains the iteraction
counter. There’s no need to declare this variable (here ’cnt’) prior to the REPEAT block. It will
automatically be created.

repeat 10,cnt
1di

print cnt
rend

You can get the internal loop counter anytime with internal variable REPEAT_COUNTER.

repeat 10

1di

print repeat_counter
rend

5.3.2 WHILE, WEND
WHILE <condtion> ... wEND

19

RASM

Repeat a block as long as the condition is evaluated as true. You may use the internal variable
WHILE_COUNTER variable to get the loop counter.

cpt=10
while cpt>0

1di

cpt=cpt-1

print ’cpt=’,cpt,’ while_counter=’,while_counter
wend

This code will loop 10 times with the following output:

Pre-processing [while.asm]

while_counter=
while_counter=
while_counter=
while_counter=
while_counter=
while_counter=
while_counter=
while_counter=
while_counter=

Assembling
cpt= 9.00
cpt= 8.00
cpt= 7.00
cpt= 6.00
cpt= 5.00
cpt= 4.00
cpt= 3.00
cpt= 2.00
cpt= 1.00
cpt= 0.00

while_counter=

1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00
9.00
10.00

Write binary file rasmoutput.bin (20 bytes)

5.3.3 Macros

MACRO <macro_name> [paraml[,param2[,...]]]

MEND

A macro is a way to extend the language, by defining a block of instructions, delimited by MACRO
and MEND (or ENDM) directives, that can later be inserted in your code. Macros can take parameters,
so you can make conditionnal assembling with it: a macro is barely a copy/paste with arguments
replacement. Arguments inside the macro are referenced using curly brackets. Here is an example of
a long distance indexing, working for any 16 bit register (except B or C):

LDIXREG H,200
LDIXREG L,32

macro LDIXREG register,dep
if {dep}<-128 || {dep}>127
push BC
1d BC,{dep}
add IX,BC
1d (IX+0),{register}
pop BC
else
1d (IX+{dep}),{register}
endif
mend

20

RASM

Macro invocation Beware that RASM will understand any misspeled macro as a label declaration!
A recommanded usage for macros without parameters, is to systematicaly use an empty parameter
7 (void)” . A misspeled macro call will then trigger an error. If you want to enforce usage of this
syntax, you can use -void option. Using a macro without any parameter will raise an error.

MACRO withoutparam

nop

MEND

withoutparam (void) ; secured call of macro

Macro calls with static or dynamic args Arguments sent to a macro can also be formulas.

MACRO test myarg

DEFB {myarg}

MEND

;Same as defb 1 : defb 2:
REPEAT 2

test repeat_counter

REND

;9ame as defb 1 : defb 1:
REPEAT 2

test {eval}repeat_counter
REND

Separating Low an Hi bytes of a 16bit register Inside a Macro, it is possible to use LOW or
HI for using the lower or the higher part of a 16 bit register. For example, 1d A,R1.1low is identical
to 1d A,C if R1=BC. A macro for adding two 16 bits register can be written like this:

macro add16, R1, R2
1d A,Rl.low
add R2.low
1d Rl.1low,A
1d A,R1.high
adc R2.high
1d R1l.high,A

mend
add16 bc,hl

5.4 Labels and modules
5.4.1 Local labels

Inside a loop (REPEAT/WHILE/UNTIL) or inside a macro, you can define local labels the same way as
Winape assembler does, by prefixing labels with ’@’. You cannot use these labels outside of the loop
Or macro.

You can use label value with a directive (ORG for example) only if the label was previously declared.
Usage of local label in a loop:

repeat 16

add hl,bc

jr nc,@no_overflow
dec hl
@no_overflow

rend

21

RASM

5.4.2 Proximity labels

Proximity labels are prefixed with a dot, and are associated with the previous label. They can be used
"locally’ directly with their ’short’ names, and anymwhere with their full name:

routinel:

add hl,bc

jr nc,.no_overflow
dec hl
.no_overflow

routine?2:

add hl,bc

jr nc,.no_overflow
dec hl
.no_overflow

routined:

X0or a

1d hl,routinel.no_overflow ; retrieve proximity label of routinel
1d de,routine2.no_overflow ; of routine2

sbc hl,de

5.4.3 Mixing different kinds of labels

global: nop
.prox: mnop ; (1)

repeat 2

jp .prox ; (=> 1)
@label: mnop ; (2)

.prox : mnop ; (3)
@label2: mnop ; (4)
.prox : mnop ; (5)

jp global.prox ; (=> 1)
jp @label ; (=> 2)

jp @label.prox ; (=> 3)
jp @label2.prox ; (=> 5)
jp .-prox ; (=> b)
rend

jp .prox ; (=> 1)
jp global2.prox ; (=> 7)

global2: mnop ; (6)

jp .prox ; (=>T7)

.prox: mnop ; (7)

jp global.prox ; (=> 1)
jp global2.prox ; (=> 7)
jp -prox ; (=>T7)

5.4.4 Modules
MODULE <namespace>

[MODULE OFF]

22

RASM

MODULE is a way to declare a section in your code. It is similar to namespace in C, and allows to prefix
globals and proximity labels with a name. It can be usefull in order to avoid conflict between portions
of code using similar labels, for example when including external code. Closing a Module section can
be done by declaring a new module, or using MODULE OFF In order to prefix a label inside a module,
underscore symbol is used : module_label. For exemple:

MODULE modulel:
start:

ret

data: equ 1
MODULE module2:

start:

ret

data: equ 2
MODULE OFF

14 a, (modulel_data)
call module2_start

5.5 Structures
5.5.1 STRUCT

STRUCT <prototype name> [,<variable name>]

ENDSTRUCT

As 780 processor is able to manage structured data thanks to its IX and IY registers, RASM introduces
STRUCT directive, wich is used for defining a structure, in a similar way to C syntax

; structure stl created with two fields chl and ch2.
struct stil

chl defw O

ch2 defb 0O

endstruct

; Nested structures:

; metastl is created with 2 sub-structures stl called prl et pr2
struct metastl

struct stl pril

struct stl pr2

endstruct

When {STRUCT} directive is used with 2 parameters, RASM will create a structure in memory, based
on the prototype. In the example below, it will instantiate a metastl structure type, called mymeta.

| struct metastl mymeta

Example of retrieving fields absolute address using the structure previously declared:

LD HL,mymeta.pr2.chl
LD A, (HL)

Example of accessing a field with an offset, by using the prototype name:

23

RASM

| LD A, (IX+metastl.pr2.chl)

5.5.2 SIZEOF

Recommended usage to get the size of a structure is to use {SIZEOF} prefix. It alsoworks for a
substructure or a field.

LD A,{SIZEOF}metastl ; LD A, 6
LD A,{SIZEOF}metastl.pr2 ; LD A, 3
LD A,{SIZEOF}metastl.pr2.chl ; LD A, 2

Like Vasm, you also can get the structure size using its prototype name but it is not recommended.

5.5.3 STRUCT Array
It’s possible to instanciate an array of structs, using this syntax:

| struct mystruct my_instances,10

Compared to ds 10*SIZEOF (mystruct), data is initialized with default values as defined in structure
declaration, and not filled with a zero value. Also it is possible to access to a specific instance, using
an index, like a regular array.

| LD HL,myinstancesb

5.6 Duration of a bloc

TICKER START,<var>

TICKER STOP|STOPZX,<var>

TICKER directive computes the duration of an instruction bloc (delimited by TICKER START and
TICKER STOP), and stores the result in a variable. It can be used for counting cycles for CPC
architecture (by using TICKER STOP), or for ZX architectures (by using TICKER STOPZX) On CPC, the
duration is expressed as ”number of NOPs”, which is approximatively equivalent to micro seconds (see
Annexe C). This directive is very convenient when writing video effects, such as rasters, where colors
have to be changed periodically, every 64 micro seconds (the duration of a video line):

1d hl,col_tab

1d bc,col_port ;#7fxx
out (c),c

1d 4,20

loop:

TICKER START, cntline
1d a, (hl)

out (c),a

inc hl
TICKER STOP, cntline
ds 64-4-cntline

dec d

jr nz, loop

24

RASM

6 Crunch and import directives

6.1 File Import
6.1.1 INCLUDE

INCLUDE ’file to read’
READ ’file to read’

Read a textfile in place of the directive. The root of the relative path is the location of the file
containing the include directive. An absolute path discard the relative path. There is no recursivity
limit, so be aware of what you are doing.

6.1.2 INCBIN

INCBIN ’file to read’[,offset[,size[,extended offset[,0FF]]1]]
INCBIN °’file to read’,REVERT

INCBIN ’file to read’,REMAP,numcol

INCBIN ’file to read’,VTILES,numtiles

INCBIN ’file to read’,ITILES,width

Read a binary file. Binary data will go straight to memory space. Additional parameters are an offset,
a size, and an option for disabling overwrite check. The extended offset is only here for compaitibily
with Winape, so you can ignore it.

e You may use a negative size, for omitting some bytes at the end of the file: With a size of -10,
the whole file except the 10 last bytes will be included.

e A null size will read the whole file.
e You may use a negative offset, it will be relative to the end of the file.

e The ’OFF’ parameter will disable overwrite check for this file. You may want to read binary
data in order to initialise a memory space, then assemble code on it.

Example:

ORG #4000
INCBIN ’makeraw.bin’,0,0,0,0FF ; read in #4000, overwrite check is disabled

ORG #4001
DEFB #BB ; overwrite 2nd byte (in #4001) without error

If you want for example to import a 32K file into 2 16Kb banks (see 7.3.5)

bank n

incbin ’my32Kbfile.bin’,0,16384
bank n+1

incbin ’my32Kbfile.bin’,16384,16384

6.1.3 Multiple files import

You can use INCBIN inside a REPEAT block, for importing a series of files. For example if you want to
import files myfilel, myfile2, ... myfile10:

25

RASM

REPEAT 10,cpt
INCBIN ’myfile{cpt}’
REND

If REVERT keyword is used, the file will be inserted backwards.
REMAP VTILES and ITILES variants are used for importing sprites.

6.1.4 Audio Files

INCBIN Filename,SMP|SM2|SM4
INCBIN Filename,DMA,preamp, [Optionl[,Option2[,...]1]]

All WAV formats -single channel or multi channel- are supported . Voices will be merged in latter
case. The sampling frequency is not taken into account. To import a WAV file, you must specify one
fo the 4 formats among SMP, SM2, SM4 and DMA:

e With SMP format, a sample corresponds to a byte.

e SM2 format groups two values in a single byte (two nibbles), the first sample corresponding to
the 4 most significant bits.

e SM4 format four samples are stored in a single byte, the first sample being stored in the 2 most
significant bits. 2 bits values are converted to 4 bits as follow: 00b — 0 ,01b — 13, 10b — 14,
11b — 15

e DMA format, which prepares data as DMA list, so it is specific to the CPC+ architecture
family. DMA lists are ready to be executed by the PSG. Your audio file for DMA list must first
be converted to 15600Hz. It is possible to specify a preamp factor, and also additional options:

— DMA_INT : for triggering an interruption once the sample has been played
— DMA_CHANNEL_A , DMA_CHANNEL_B, DMA_CHANNEL_C : For choosing which PSG channel to use
— DMA_REPEAT, count : For repeating the sample up to 4095 times.

ORG #4000
INCBIN ’sound.wav’,SMP
INCBIN ’sound.wav’,DMA,1,DMA_CHANNEL_A,DMA_INT,DMA_REPEAT,4

6.2 Crunching
6.2.1 Crunched Section

LZ48 | LZ49 | LZ4 | LZX7 | LZEXO | LZAPU |LZSA1 [minmatchsize] | LZSA2 [minmatchsize]
LZCLOSE

Open a crunched section in LZ48 1.Z49, LZ4, ZX7, LZAPU,LZSA or Exomizer. A LZ section is closed
with LZCLOSE.

LZSA takes an optional parameter, for controlling how strong data will be crunched, and how fast it
will uncompress. For example, for LZSA1, with minmatch=>5, it will uncrunch quickly For LZSA2, with
minmatch=2, it will crunch strongly. For more information, check the documentation by Emmanuel
Marty, who created LZSA cruncher.

Generated code is crunched once it is assembled. The code following such a block is then relocated
(labels, ...).

You cannot call a label located after a crunched zone from the crunched zone because RASM cannot
determine where it will be located after crunching. This will trigger an error.

26

RASM

Code or data of a crunched zone cannot exceed 64K. Also, you cannot imbricate crunched sections.
Example:

org #1000

1d hl,crunchedsection

1d de, #8000

call decrunch

call #8000

jp next ; label next after crunched zone will be relocated
crunchedsection:

LZ48 ; —-- this section will be crunched
org #8000,$

nop

nop

nop

ret

LZCLOSE ; -- end of crunched section
next:

ret

6.2.2 Crunched Binaries
INCL48, INCL49, INCLZ4, INCZX7, INCEXO, INCAPU, INCLZSA1, INCLZSA2 ’file to read’

Read a binary file, crunch it in LZ48, .Z49, 1.Z4, Exomizer, LZSA or ZX7 on the fly.

6.2.3 SUMMEM

SUMMEM start_address,end_address

This directive sums all bytes beween start_address and end_address in the current bank and store
the result at the address where the directive is located.

6.2.4 XORMEM

XORMEM start_address,end_address

Same as XORMEM, but computes a XOR operation instead of a sum. It can be used for computing a
checksum, for example:

checkrom:
Xor a

14 hl1,0

1d bc,#1000
.computexor:
xor (hl)

inc hl

1d d,a

dec bc

1d a,b

or c

1d a,d

jr nz,.computexor

27

RASM

1d hl,checksum
cp (hl)

jr nz,romKO

jr romOK
checksum:
xormem O,#1000

28

RASM

7 Amstrad CPC Specific features

7.1 Bank Management
7.1.1 BANK Prefix

Using {BANK} prefix before a label (example: {BANK}mylabel) will return the BANK number where
the label is located, intead of its absolute address. For example:

BANK 0O

1d a,{bank}mysub ; will be assembled as LD A,1
call connect_bank

jp mysub

BANK 1

defb ’hello’

mysub

jr $

7.1.2 PAGE Prefix

Use PAGE prefix before a label (example: {PAGE}mylabel) to get a value that can be used to program
the Gate Array for accessing the bank where the label is located. For example with a label located
into BANK 5, #7FC5 will be returned. If you are using BANKSET directive to select 4 banks in a
64K set, then the gate array value is composed by the set number and the 2 most significant bits of
the label address. Example:

BANK O
1d bc,{PAGE}mysub ; will be assembled LD BC,#7FC5
out (c),a
jp mysub
BANK 5
defb ’hello’
mysub
jr $

7.1.3 PAGESET Prefix

You can use {PAGESET} prefix before a label (example: {PAGESET }mylabel) to program the Gate
array for selecting the BANKSET where the label is located. For example, for a label stored in BANK
#5, #7FC2 will be returned.

BANK 0

1d a,lo({pageset}mysub) ; will be assembled as LD A,#C2
1d b,#7F

out (c),a ; whole RAM is switched, code is supposed

jp mysub ; to be stored in ROM, or in a proper place

BANK 5
defb ’hello’
mysub
jr $

29

RASM

7.2 AMSDOS headers and DSK files
7.2.1 AMSDOS Header

This directive adds an AMSDOS header to the binary file generated by RASM. This directive has no
effect on SAVE directive, which has its own option for adding AMSDOS header.

7.2.2 SAVE directive

SAVE ’filename’ ,<address>,<size>[,AMSDOS|DSK|TAPE[,’filename’[,<side>]]]

Records a binary file of the given size, starting from the specified address, from current memory
space. All SAVE directives are executed at the end of the assemblig process: there is no way to save
intermediate assembling states.

When recording a file on a floppy image (DSK), its name will be automatically converted according to
the AMSDOS format: lower cases will be replaced by upper cases, and it will be truncated. If the DSK
file doesn’t exist, il will be automatically created. If it already exists, and if the binary file produced
by rasm already exists on the disk, it WON'T be updated, except if —eo option is used.

With TAPE format, a CDT filt will be produced.

Examples:

;Save a raw binary file
SAVE ’myfile.bin’,start,size

;Save a binary file with AMSDOS header
SAVE ’myfile.bin’,start,size, AMSDOS

;Save a binary file (AMDOS header mandatory) on a DSK file
SAVE ’myfile.bin’,start,size,DSK, ’fichierdsk.dsk’

Combined with RUN:

ORG #9000

start:

call #bb06
ret

end:

RUN start
SAVE ’main.bin’,start,end-start,DSK, ’main.dsk’

7.3 Snapshot and Cartridges

RASM also allows to generate cartridge (.crt) and snapshot (.sna) files. These files can be used by
some emulators such as Wanape and Ace.

BUILDCPR [EXTENDED]
BANK 0

Cartridge Generation Without parameter, this directive is optional, as by default, when a BANK
directive is used, a cardridge file is generated. However, it is recommended to explicitly use this
directive to indicate that a cardridge will be generated. If EXTENDED parameter is added, then an
extended cartdridge (.xpr) will be generated. It can be used in cunjunction with -xpr option, for
generating additional file for each 512KB slot.

30

RASM

BUILDSNA
BANK O
RUN #A000

Snapshot Generation

7.3.1 BUILDSNA
BUILDSNA [V2]

This directive forces Rasm to generate a snapshot instead of a cartridge. The entry point must be
specified (0 is not valid).

By default, the snapshot is targeted for a CPC 6128 with CRTC 0. You can use SETCRTC and SETCPC
directives to select an other configuration. Audio channels are disabled, ROMS are disabled and
interrupt mode is set to 1.

7.3.2 SETCPC
SETCPC <model>

Select CPC model when recording a v3 snapshot:
0: CPC 464

CPC 664

CPC 6128

464 Plus

6128 Plus

GX-4000

ST N

7.3.3 SETCRTC
SETCRTC <CRTC model>

Select CRTC model when writing a v3 snapshot file. Value for CRTC model ranges from 0 to 4. CRTC
3 corresponds to CPC Plus and GX-4000, othe values to classic CPCs.
7.3.4 SETSNA

SETSNA RegisterName,value
SETSNA GA_PAL,index,value
SETSNA CRTC_REG, index,value
SETSNA PSG_REG, index,value

With first syntax (taking two parameters), these registers can be set:

e 780 Main registers: Z80_AF, Z80_F, Z80_A, Z80_BC, Z80_C, Z80_B, Z80_DE, Z80_E, Z80.D,
7Z80_HL, 7Z80_L, Z80_H,

e 780 Mirror registers: Z80_AFX, Z80_FX, Z80_AX, Z80_BCX, Z80_CX, Z80_BX, Z80_DEX, Z80_EX,
780_DX, Z80_HLX, Z80_LX, Z80_HX

o 780 Internal registers: Z80_R, Z80_1, Z80_IFF0, Z80IFF1, 780 IX, Z80_IXL, 7Z80_IXH, Z80.IY,
Z80_IYL, Z80_IYH, Z80_SP, Z80_PC, Z80_IM,

e Gate Array: GA_PEN, GA_ROMCFG, GA_RAMCFG, GA_VSC, GA_ISC

e CRTC internal registers: CRTC_SEL, CRTC_TYPE, CRTC_HCC, CRTC_CLC, CRTC_RLC,
CRTC_VAC, CRTC_VSWC, CRTC_HSWC, CRTC_STATE,

31

RASM

e PPL: PPI.A, PPI B, PPI.C, PPI.CTL, PSG_SEL, CPC_TYPE, INT_NUM,
¢ FDD: FDD_MOTOR, FDD_TRACK

e PRINT: PRNT_DATA

o INTERRUPTS : INT_REQ

With the 3 other syntaxes, SETSNA takes an additional parameter, in order to specify the index of the
register

7.3.5 BANK

BANK [ROM page number]
BANK [RAM page number]
BANK NEXT

Selects a ROM bank (while exporting a cartridge) or a RAM slot (for snapshots) for storing code or
data. For a cartdridge, values range from 0 to 31. In snapshot mode the values range from 0 to 35
(64K base memory + 512K extended memory). Used without parameter, BANK directive opens a
new memory workspace.

By default, when using BANK, a cartridge will be generated, except if BUILDSNA directive was used
previously.

BUILDSNA ; recommanded usage when using snapshot is to set it first
BANKSET O ; assembling in first 64K

ORG #1000

RUN #1000 ; entry point is set to #1000

1d b,#7F
1d a,{page}mydata ; get gate array value for paging memory
out (c),a
1d a, (mydata)
jr $
BANK 6 ; choose 3th bank of 2nd 64K set
nop
mydata defb #DD

bank
; bank used without parameter, this is a temporary memory space
; that won’t be saved in the snapshot

pouet
repeat 10
cpi

rend

camion

SAVE"another" ,pouet,camion-pouet
By default, snapshot v3 are exported. There is a compatibility option for selecting snapshot version

2, some emulators or hardware board do not support snapshot v3 yet. Just add arg 'v2’ to SNAPSHOT
directive or add -v2 option to the command line while invocating RASM.

32

RASM

7.3.6 RUN

RUN <address>[,<gate array configuration>]

This option is only used to set then entry point of a snapshot file. It is ignored if a cartridge is exported.
The gate array can be configured with additional parameters

7.4 Specific Directives for snapshot images
7.4.1 BANKSET

BANKSET <64K bloc number>

BANKSET directive select a set of 4 pages in a row. With snapshot v3, there are 9 memory sets,
indexed from 0 to 8.

You may use BANK and BANKSET in a source but you cannot select the same memory space. A
check will trigger an error if you try to.

Using this directive enables snapshot output (like BUILDSNA does).

7.4.2 BREAKPOINT

BREAKPOINT [<address>]
[@]BRKlabel

Add a breakpoint (this won’t be assembled) to the current address or to the address of the parameter.
Breakpoints may be exported to a text file or into snapshots (Winape and ACE compatible) with -sb
option.

Another way to set a breakpoint is to prefix a label with BRK or @BRK.

7.4.3 Export option
e -oc <cartridge filename>: set the full filename for cartridge output.
e -0i <snapshot filename >set the full name of exported snapshot file
e -v2: Export a snapshot version 2 (default is version 3)

e -ss : Export symbols in snapshot file (Winape and ACE emulator format), only with snapshot
version 3+

e -0k <breakpoint filename>: set the full filename for breakpoint export.
e -¢b : Export breakpoints in a text file
e -sb: Export breakpoints in snapshot file (Winape and ACE emulator format), only with snapshot

version 3+

7.5 CPC+ Colors
7.5.1 GET.R, GET.G, GET.B

GET_R <16 bits RGB value>
GET_G <16 bits RGB value>
GET_B <16 bits RGB value>

Use this in an expression, in order to get one of the 4 bit component of a 16 bit color as used in the
ASIC

33

RASM

7.5.2 SET.R, SET.G, SET_B

SET_R <4 bits value>
SET_G <4 bits value>
SET_B <4 bits value>

Returns a 16 bit value where the 4-bit value of the color component (R,G,B) is set
| dw (SETR 4) | (SETG 15) | (SET_B 0) ; Defines RGB Color (4,15,0)
you also can define your own macro like this:

macro drgb dr,db,dg
dw SETR dr | SET.G dg | SETB db
mend

7.6 Deprecated Directives
7.6.1 NOCODE
NOCODE

CODE
This directive is used for disabling code generation for a portion of code.

7.6.2 WRITE DIRECT

WRITE DIRECT <lower rom>[,<higher rom>[,<RAM gate array>]]

This directive is only supported for Winape compatibility. Prefer usage of BANK or BANKSET directives.

7.6.3 LIST, NOLIST, LET

These directives are ignored. Usage for Maxam/Winape compatibility only.

34

RASM

8 ZX Specific features

RASM also features a few options and directives for ZX architecture.

8.1 HOBETA Directive
HOBETA

Use this directive for generating a file in HOBETA format
8.2 Bank Selection

8.2.1 BUILDZX Directive

BUILDZX <bank>

Use this directive for selecting a bank (0..7)

8.3 Options

-sx option can be used for exporting symbols for ZX emulators, where the selected bank is output.
(<bank>:<adresse>)

35

RASM

9 Compiling and Embedding
9.1 Building RASM

There is no installation procedure for RASM, as it consists in a single executable file. As C source
code is provided with RASM, it can be recompiled. Here are the commands for some platforms and
compilers:

9.1.1 Linux

cc rasm_vXXX.c -02 -1m -1rt -march=native
mv a.out rasm
strip rasm

9.1.2 Windows (Visual Studio)
cl.exe rasm_vXXX.c -02 -0b3

9.1.3 Dos/Windows 32 (Watcom)
wcl386 rasm_vXXX.c -6r -6s -fp6 -dO -k4000000 -ox /bt=D0S /l=dos4g -DOS_WIN=1 -DNOAPLIB=1

AP-Ultra cruncher is not supported on this version.

9.1.4 MacOS

cc rasm_vXXX.c -02 -1m -march=native

9.1.5 MorphOS

gcc —noixemul -02 -c -o rasm rasm_vXXX.c
strip rasm

9.2 Embedding RASM
There are 3 steps t follow for integrating RASM into your own C/C++ application:

e Build RASM as an object binary that can be linked. In order to do this, it must be compiled
with INTEGRATED_ASSEMBLY symbol.

e Include 'rasm.h’ in our program, and use one of the two functions for assembling our Z80 code.
e Building our application, without forgetting to link the binary file produced in step 1.

As a first example, we’ll use RasmAssemble function, which returns an error code (0 if everything
went fine, or -1 if an error happened), and also assembled byte code, in an array of unsigned chars.
RasmAssembleInfos is similar, but it also returns additional data, such as a list of errors and the value
of all symbols.

#include "rasm.h"

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

// Prgram to assemble
const charx prog="org #9000 \n\

36

RASM

1d b,10 \n\
lp: djnz 1lp \n\
ret \n";

int main(void) {
printf ("%s\n", prog);

unsigned char *buf = NULL;
int asmsize = 0;

int res = RasmAssemble(prog, strlen(prog), &buf, &asmsize);

printf ("Result=),d, Generated code size=Yd\n",res,asmsize);

if (res==0)
{
for (int i=0; i<asmsize; i++)
{
printf ("%02X ", buf[i]);
if ((i&15)==15) printf("\n");
}
printf ("\n");
}
else
{
printf ("Failure!\n");
}
if (buf)
free(buf);
return O;

}
In order to copile rasm and our example (embed.cpp):

gcc -D INTEGRATED_ASSEMBLY rasm vOl11ll.c -c -o rasm_embedded.obj
gcc embed.cpp rasm_embedded.obj -1m

When executed, it produces this:

$./a.out

org #9000

1d b,10

lp: djnz 1p

ret

Result=0, Generated code size=5
06 OA 10 FE C9

9.2.1 Errors and Symbols

37

RASM

A Syntactic coloration

A.1 Syntax color with VIM

If you already have a syntax color file, just add the following lines to the file .vim/syntax/z80.vim Or
you may download the whole file here

" rasm/winape directives

syn keyword z80PreProc charset bank write save include incbin incl48 incl49

syn keyword z80PreProc macro mend switch case break while wend repeat until

syn keyword z80PreProc buildcpr amsdos 1z48 1z49 lzclose protect

syn keyword z80PreProc direct brk let print stop nolist str

syn keyword z80PreProc defr dr defi undef

syn keyword z80PreProc bankset page pageset sizeof endm struct endstruct ends

syn keyword z80PreProc incexo lzexo 1zx7 inczx7 buildsna setcrtc setcpc assert print
syn keyword z80Reg 1lix 1liy hix hiy

38

http://www.roudoudou.com/rasm/z80.vim

RASM

B 780 Opcodes

B.1 Main Instructions

-

djnz *

2 jr nz,*

3 jr nc,*

4 1d b,b

o

1d d,b

6 1d h,b

7 1d
(n1),b

®

add a,b

9 sub b

a

ret nz

o

ret nc

=

ret po

F ret p

B.2

0

4 in b,(c)
5 in d,(c)
6 in h,(c)

7 in (c)

B 1ldir

1d

1d

1d

1d
(hl

be, **

de,**

hl,**

Sp,**

b,c

d,c

h,c

)¢

add a,c

sub ¢

and ¢

or

pop be

Pop

pop

pop

de

hl

af

2

1d
(bc) ,a

1d
(de) ,a

1d
(++) ,h1

1d

(*x) ,a

1d b,d

1d d,d

1d h,d

1d

(n1),d

add a,d

sub d

and d
or d

Jjp nz,**

p ne,xx

Jp po,**

Jp p,**

3 4
inc bc inc b
inc de inc d
inc hl inc h
inc sp inc (hl)

1d b,e 1d b,h

1d d,e 1d d,h

1d h,e 1d h,h

1d 1d

(hl) e (h1),h

add a,e add a,h

sub e sub h
and e and h
or e or h
ip *x call
nz, **
out call
(x),a nc,**
ex call

(sp),hl | po,**

di call

p.*

dec b

dec d

dec h

dec (hl)

1d b,1

1d 4,1

1d h,1

1d

(h1),1

add a,l

sub 1

and 1
or 1

push bc

push de

push hl

push af

Extended instructions

cpi

cpi.

r

3 4
14 neg
(%%) ,bc

14 neg
(%%) ,de

1d neg
(+%),h1

14 neg
(*x) ,sp

outi

otir

retn

retn

retn

retn

1d b,*

1d d,*

1d h,*

(h1),*

1d
b, (h1)

1d
d, (h1)

1d
h, (h1)

halt
add
a, (nl)

sub (hl)

and (hl)
or (hl)

add a,*

sub *

and *

or *

1d b,a

1d d,a

1d h,a

1d
(nl),a

add a,a

sub a

and a

or a

rst #00

rst #10

rst #20

rst #30

1d i,a

1d a,i

39

ex
af,af’

T oc,*

1d c,b

1d e,b

1d 1,b

1d a,b

adc a,b

sbc a,b

xor b
cp b

ret z

ret c

ret pe

ret m

in ¢, (c)

in e, (c)

in 1,(c)

in a,(c)

1ldd

lddr

add
hl,bc

add
hl,de
hl,hl
add
hl,sp
1d c,c
1d e,c
1d 1,c
1d a,c
adc a,c

sbe a,c

xor ¢

cp ¢

jp (m1)

1d sp,hl

cpdr

A

1d
a, (bc)

1d
a, (de)

1d
hl, (x%)

1d

a, (¥%)

1d c,d

1d e,d

1d 1,d

1d a,d

adc a,d

sbc a,d

xor d
cp d

Jp zZ,**

Jp c,**

jp pe,**

Jp m, ¥k

1d c,e

1d e,e

1d 1,e

1d a,e

adc a,e

sbc a,e

xor e
cp e

prefix
cB

in a, (%)

ex de,hl

ei

B

1d
be, (k%)

1d
de, (**)

1d
hl, (%)

1d
sp, (¥*)

outd

otdr

1d c,h

1d e,h

1d 1,h

1d a,h

adc a,h

sbc a,h

xor h
cp b

call
2z, %k

call
C, k%

call
pe,*x

call
m, %

1d c,1

1d e,l

1d 1,1

1d a,l

adc a,1

sbc a,l1

xor 1
cp 1
call #*
prefix
DD

prefix
ED

prefix
FD

reti

retn

retn

retn

1d c,*

1d e,*

1d 1,%

1d a,*

1d

c, (hl)

1d
e, (h1)

1d
1, (hl)

1d
a, (h1)

adc
a, (h1)

sbc
a, (h1)

xor (hl)
cp (h1)

adc a,*

sbc a,*

Xor *

cp *

rrca

1d c,a

1d e,a

1ld 1,a

1d a,a

adc a,a

sbc a,a

xor a

cp a

rst #08

rst #18

rst #28

rst #38

1d r,a

4 a,r

RASM

B.3 Bit instructions (CB)

[1 2 3 4 5 6 7 8 9 A B C D E F

0 rlcb rlc ¢ rlc d rlc e rlc h rlc 1 rlc (hl) rlc a rrc b rrc ¢ rrc d rrc e rrc h rrc 1 rrc (hl) rrc a

1 rlb rl c rld rl e rl h rl 1l rl (hl) rl a rr b Ir c rr d Ir e rr h rr 1 rr (hl) Ir a

2 slab sla ¢ sla d sla e sla h sla 1 sla (hl) sla a sra b sra ¢ sra d sra e sra h sra 1 sra (hl) sra a

3 sll b sll ¢ sll d sll e sll h sll 1 s11 (hl) sll a srl b srl c srl d srl e srl h srl 1 srl (hl) srl a

4 bit 0,b bit 0,c bit 0,d bit O,e bit 0,h bit 0,1 bit bit 0,a bit 1,b bit 1,c bit 1,d bit 1,e bit 1,h bit 1,1 bit bit 1,a
0, (hl1) 1, (1)

5 bit 2,b bit 2,c | bit 2,d bit 2,e bit 2,h bit 2,1 bit bit 2,a bit 3,b bit 3,c bit 3,d bit 3,e bit 3,h bit 3,1 bit bit 3,a
2, (hl1) 3, (h1)

6 bit 4,b bit 4,c | bit 4,d bit 4,e bit 4,h bit 4,1 bit bit 4,a bit 5,b bit 5,c bit 5,d bit 5,e bit 5,h bit 5,1 bit bit 5,a
4, (hl) 5, (h1)

7 bit 6,b bit 6,c bit 6,d bit 6,e bit 6,h bit 6,1 bit bit 6,a bit 7,b bit 7,c bit 7,d bit 7,e bit 7,h bit 7,1 bit bit 7,a
6, (h1) 7,(h1)

8 res 0,b res O,c | res 0,d res O,e res O,h res 0,1 res res 0,a res 1,b res 1,c res 1,d res 1,e res 1,h res 1,1 res res 1,a
0, (h1) 1,(hl)

9 res 2,b res 2,c | res 2,d res 2,e res 2,h res 2,1 res res 2,a res 3,b res 3,c res 3,d res 3,e res 3,h res 3,1 res res 3,a
2, (h1) 3, (hl)

A res 4,b res 4,c res 4,d res 4,e res 4,h res 4,1 res res 4,a res 5,b res 5,c res 5,d res 5,e res 5,h res 5,1 res res 5,a
4, (h1) 5, (h1)

B res 6,b res 6,c res 6,d res 6,e res 6,h res 6,1 res res 6,2 res7,b res7,c res7,d 7res7,e res7,h res7,l res res 7,a
6, (h1) 7,(h1)

C set 0,b set 0,c set 0,d set 0,e set 0,h set 0,1 set set 0,a set 1,b set 1,c set 1,d set 1,e set 1,h set 1,1 set set 1,a
0, (h1) 1, (h1)

D set 2,b | set 2,c set 2,d set 2,e set 2,h set 2,1 set set 2,a set 3,b set 3,c set 3,d set 3,e set 3,h set 3,1 | set set 3,a
2, (hl1) 3, (h1)

E set 4,b set 4,c set 4,d set 4,e set 4,h set 4,1 set set 4,a set 5,b set 5,c set 5,d set 5,e @ set 5,h set 5,1 | set set 5,a
4, (hl) 5, (h1)

F set 6,b set 6,c set 6,d @set 6,e set 6,h set 6,1 set set 6,a set 7,b set 7,c set 7,d set 7,e set 7,h set 7,1 | set set 7,a
6, (hl) 7,(h1)

B.4 IX instructions (DD)

0 1 2 3 4 5 6 7 8 9 A B C D E F
0 add
ix,bc
1 add
ix,de
2 1d ix,** 1d inc ix inc ixh dec ixh 1d ixh,* add 1d dec ix inc ixl dec ixl 1d ixl,*
(#%),ix ix,ix ix, (x%)
3 inc dec 1d add
(ix+x) (ix+%) (ix+x) ,* ix,sp
4 1d b,ixh 1d b,ixl 1d b, 1d c,ixh 1d c,ixl 1d c,
(ix+%) (ix+*)
5 1d d,ixh 1d d,ixl 1d d, 1d e,ixh 1d e,ixl 1d e,
(ix+*) (ix+x)
6 1d ixh,b 1d ixh,c 1d ixh,d 1d ixh,e 1d 1d 1d h, 1d ixh,a 1d ixl,b 1d ixl,c 1d ixl,d 1d ixl,e 1d 1d 141, 1d ixl,a
ixh,ixh | dixh,ixl (ix+¥) ixl,ixh | ixl,ixl (ix+*)
7 1d 1d 1d 1d 1d 1d 1d 1d a,ixh 1d a,ixl 1d a,
(ix+*),b | (ix+*),c (ix+¥),d (ix+*),e (ix+*),h (ix+%),1 (ix+x) ,a (ix+*)
8 add add add a, adc adc adc a,
a,ixh a,ixl (ix+¥) a,ixh a,ixl (ix+x)
9 sub ixh sub ixl sub sbc sbc sbc a,
(ix+*) a,ixh a,ixl (ix+*)
A and ixh and ixl and xor ixh xor ixl xor
(ix+*) (ix+*)
B or ixh or ixl or cp ixh cp ixl cp
(ix+x) (ix+*)
c prefix
DDCB
D
E pop ix ex push ix jp (ix)
(sp),ix
F 1d sp,ix

40

RASM

B.5 IX bit instructions (DDCB)

i

©

=

o

0

rlc
(ix+%),b

rl
(ix+%),b

sla
(ix+%),b

s11
(ix+) ,b

bit 0,
(ix+*)

bit 2,
(ix+*)

bit 4,
(ix+*)

bit 6,
(ix+*)

res 0,
(ix+x),b

res 2,
(ix+%),

o

res 4,
(ix+%),b

res 6,
(ix+%),b

set 0,
(ix+#),b

set 2,
(ix+),b

set 4,
(ix+%),b

set 6,
(ix+%),b

rlc
(ix+%),c

rl
(ix+%) ¢

sla
(ix+*),c

s11
(ix+%),c

bit 0,
(ix+%)

bit 2,
(ix+¥)

bit 4,
(ix+x)

bit 6,
(ix+*)

res 0,
(ix+¥),c

res 2,
(ix+%),c

res 4,
(ix+%) ¢

res 6,
(ix+%) ¢

set 0,
(ix+%) ¢

set 2,
(ix+¥) ¢

set 4,
(ix+*),c

set 6,
(ix+%),c

rlc
(ix+%),d

rl
(ix+*) ,d

sla
(ix+*) ,d

s11
(ix+*) ,d

bit 0,
(ix+*)

bit 2,
(ix+*)

bit 4,
(ix+*)

bit 6,
(ix+*)

res 0,
(ix+*),d

Tes 2,
(ix+%),d

res 4,
(ix+#),d

res 6,
(ix+*) ,d

set 0,
(ix+*) ,d

set 2,
(ix+*) ,d

set 4,
(ix+%) ,d

set 6,
(ix+%) ,d

3

rlc
(ix+%),e

rl
(ix+%) ,e

sla
(ix+#) e

s11
(ix+%) e

bit 0,
(ix+*)

bit 2,
(ix+*)

bit 4,
(ix+x)

bit 6,
(ix+%)

res 0,
(ix+%) e

res 2,
(ix+%),e

res 4,
(ix+%) ,e

res 6,
(ix+#) e

set 0,
(ix+%) e

set 2,
(ix+%) e

set 4,
(ix+*) e

set 6,
(ix+%) e

4

rlc
(ix+%),h

rl
(ix+%),h

sla
(ix+*),h

s11
(ix+*),h

bit 0,
(ix+%)

bit 2,
(ix+*)

bit 4,
(ix+x)

bit 6,
(ix+*)

res 0,
(ix+%),h

res 2,
(ix+%),h

res 4,
(ix+%),h

res 6,
(ix+%),h

set 0,
(ix+*),h

set 2,
(ix+*),h

set 4,
(ix+%) ,h

set 6,
(ix+%),h

5

rlc
(ix+%),1

rl
(ix+%),1

sla
Gix+#),1

s11
Gix+*),1

bit 0,
(ix+*)

bit 2,
(ix+*)

bit 4,
(ix+*)

bit 6,
(ix+*)

res 0,
(ix+%),1

res 2,
(ix+x),

=

res 4,
(ix+x),1

res 6,
(ix+#),1

set 0,
(ix+%),

=

set 2,
Gix+*),1

set 4,
(ix+%),1

set 6,
(ix+%),1

6

rlc
(ix+*)

rl
(ix+*)

sla
(ix+x)

s11
(ix+x)

bit 0,
(ix+%)

bit 2,
(ix+%)

bit 4,
(ix+%)

bit 6,
(ix+*)

res 0,
(ix+*)

res 2,
(ix+*)

res 4,
(ix+*)

res 6,
(ix+%)

set 0,
(ix+%)

set 2,
(ix+%)

set 4,
(ix+%)

set 6,
(ix+%)

7

rlc
(ix+x)

rl
(ix+x)

sla
(ix+x*)

s11
(ix+x*)

bit 0,
(ix+*)

bit 2,
(ix+x)

bit 4,
(ix+*)

bit 6,
(ix+*)

res 0,
(ix+%)

res 2,
(ix+x)

res 4,
(ix+%)

res 6,
(ix+%)

set 0,
(ix+%)

set 2,
(ix+*)

set 4,
(ix+*)

set 6,
(ix+*)

,a
,a
,a

,a

,a
,a
,a
,a
,a
,a
,a

a

41

rrc
(ix+%),b

rr
(ix+%),b

sra
(ix+#),b

srl
(ix+*) ,b

bit 1,
(ix+*)

bit 3,
(ix+*)

bit 5,
(ix+*)

bit 7,
(ix+*)

Tes 1,
(ix+*),b

res 3,
(ix+%),b

res 5,
(ix+%),b

res 7,
(ix+#),b

set 1,
(ix+*) ,b

set 3,
(ix+*) ,b

set 5,
(ix+%),b

set 7,
(ix+%),b

rrc
(ix+%),c

rr
(ix+%),c

sra
(ix+%) ¢

srl
(ix+) ¢

bit 1,
(ix+%)

bit 3,
(ix+¥)

bit 5,
(ix+¥)

bit 7,
(ix+*)

res 1,
(ix+¥),c

res 3,
(ix+%),c

res 5,
(ix+%),c

res 7,
(ix+) ¢

set 1,
(ix+) ¢

set 3,
(ix+5) ¢

set 5,
(ix+*),c

set 7,
(ix+%),c

A

rrc
(ix+x),d

rr
(ix+#),d

sra
(ix+*) ,d

srl
(ix+*),d

bit 1,
(ix+x*)

bit 3,
(ix+x)

bit 5,
(ix+x)

bit 7,
(ix+*)

res 1,
(ix+%),d

res 3,
(ix+x),d

res 5,
(ix+#),d

res 7,
(ix+*),d

set 1,
(ix+*),d

set 3,
(ix+*) ,d

set 5,
(ix+%) ,d

set 7,
(ix+%) ,d

B

rre
(ix+%) ,e

rr
(ix+%) ,e

sra
(ix+#) e

srl
(ix+*) e

bit 1,
(ix+*)

bit 3,
(ix+*)

bit 5,
(ix+*)

bit 7,
(ix+*)

res 1,
(ix+x) e

res 3,
(ix+%) ,e

res 5,
(ix+%) ,e

res 7,
(ix+#) e

set 1,
(ix+*) e

set 3,
(ix+%) e

set 5,
(ix+*) e

set 7,
(ix+*) e

rrc
(ix+%) ,h

T
(ix+%),h

sra
(ix+%),h

srl
(ix+*),h

bit 1,
(ix+%)

bit 3,
(ix+¥)

bit 5,
(ix+x)

bit 7,
(ix+x)

res 1,
(ix+%),h

res 3,
(ix+%) ,h

res 5,
(ix+%),h

res 7,
(ix+%),h

set 1,
(ix+*),h

set 3,
(ix+*) ,h

set 5,
(ix+%) ,h

set 7,
(ix+%),h

D

rrc
(ix+x),1

T
(ix+¥),1

sra
(ix+*),1

srl
(ix+%),1

bit 1,
(ix+*)

bit 3,
(ix+*)

bit 5,
(ix+*)

bit 7,
(ix+x*)

res 1,
(ix+x),1

res 3,
(ix+x),1

res 5,
(ix+¥),1

res 7,
(ix+#),1

set 1,
(ix+%),1

set 3,
(ix+%),1

set 5,
(ix+%),1

set 7,
(ix+%),1

E

rrec
(ix+%)

rr
(ix+*)

sra
(ix+*)

srl
(ix+*)

bit 1,
(ix+*)

bit 3,
(ix+*)

bit 5,
(ix+*)

bit 7,
(ix+*)

res 1,
(ix+*)

res 3,
(ix+%)

res 5,
(ix+*)

res 7,
(ix+*)

set 1,
(ix+*)

set 3,
(ix+*)

set 5,
(ix+*)

set 7,
(ix+*)

F

rrc
(ix+%),a

T
(ix+%),a

sra
(ix+%),a

srl
(ix+%),a

bit 1,
(ix+%)

bit 3,
(ix+¥)

bit 5,
(ix+x)

bit 7,
(ix+*)

res 1,
(ix+%),a

res 3,
(ix+%),a

res 5,
(ix+%) ,a

res 7,
(ix+%) 2

set 1,
(ix+%) ,a

set 3,
(ix+*) ,a

set 5,
(ix+*),a

set 7,
(ix+%),a

RASM

B.6

6 1d iyh,b

7 1ld
(iy+0),b

1d iy,**

1d iyh,c

1d
(iy+%),c

pop iy

2 3 4
1d inc iy inc iyh
(x%) iy
inc
(iy+*)
1d b,iyh
1d d,iyh

1d iyh,d 1d iyh,e 1d
iyh,iyh

1d 1d 1d
(iy+x),d | (iy+*¥),e (iy+%),h

add
a,iyh
sub iyh

and iyh

or iyh

ex
(sp),iy

IY instructions (FD)

dec iyh | 1d iyh,*

dec 1d
(iy+*) (iy+*) ,*

1d b,iyl 1d b,

(iy+*)
1d d,iyl 1d d,
(iy+*)
1d 1d h,

iyh,iyl (iy+%)

1d

(iy+%),1

add add a,
a,iyl (iy+*)

sub iyl sub

(iy+*)
and iyl | and

(iy+*)
or iyl or

(iy+*)

push iy

1d iyh,a

1d
(1y+x) ,a

42

1d iyl,b

iy,iy iy, (x*)

add
iy,sp

1d iyl,c 1d iyl,d

jp Gy)

1d sp,iy

dec iy

1d iyl,e

prefix
FDCB

inc iyl

1d c,iyh

1d e,iyh

1d

iyl,iyh

1d a,iyh

dec iyl

1d c,iyl
1d e,iyl
1d
iyl,iyl
1d a,iyl
adc
a,iyl

sbe
a,iyl

xor iyl

cp iyl

1d iyl,*

d c,
(iy+)

d e,
(iy+*)

41,
(iy+%)

1d a,
(iy+%)

adc a,
(iy+%)

sbe a,
(iy+*)

xor
(iy+*)

cp
(iy+*)

1d iyl,a

RASM

B.7 TIY bit instructions (FDCB)

i

©

=

o

0

rlc
(iy+%),b

rl
(iy+#),b

sla
(iy+%),b

s11
(iy+%),b

bit 0,
(iy+)

bit 2,
(iy+*)

bit 4,
(iy+%)

bit 6,
(iy+%)

res 0,
(iy+%),b

res 2,
(iy+%),

o

res 4,
(iy+*),b

res 6,
(iy+%),b

set 0,
(iy+*),

o

set 2,
(iy+%),b

set 4,
(iy+),b

set 6,
(iy+0),b

rlc
(iy+x),c

rl
(iy+%) ¢

sla
(iy+*),c

s11
(iy+*),c

bit 0,
(iy+*)

bit 2,
(iy+*)

bit 4,
(iy+H)

bit 6,
(iy+%)

res 0,
(iy+$) ,c

res 2,
(iy+x),c

res 4,
(iy+%) ¢

res 6,
(iy+%) ¢

set 0,
(iy+%) ¢

set 2,
(iy+%) ¢

set 4,
(iy+*),c

set 6,
(iy+*),c

rlc
(iy+x),d

rl
(iy+%) ,d

sla
(iy+%),d

s11
(iy+%),d

bit 0,
(iy+*)

bit 2,
(iy+*)

bit 4,
(iy+%)

bit 6,
(iy+%)

res 0,
(iy+%),d

Tes 2,
(iy+x),d

res 4,
(iy+%) ,d

res 6,
(iy+%) ,d

set 0,
(iy+%) ,d

set 2,
(iy+),d

set 4,
(iy+%) ,d

set 6,
(iy+%) ,d

3

rlc
(iy+*) ,e

rl
(iy+x) ,e

sla
(iy+%) e

s11
(iy+%) e

bit 0,
(iy+*)

bit 2,
(iy+*)

bit 4,
(iy+%)

bit 6,
(iy+*)

res 0,
(1y+*),e

res 2,
(iy+*) ,e

res 4,
(iy+x) ,e

res 6,
(iy+%) e

set 0,
(iy+5) e

set 2,
(iy+5) e

set 4,
(iy+) e

set 6,
(iy+%) e

4

rlc
(iy+*),h

rl
(iy+%) ,h

sla
(iy+%) ,h

s11
(iy+%) ,h

bit 0,
(iy+*)

bit 2,
(iy+*)

bit 4,
i+

bit 6,
(iy+%)
res 0,

(iy+%),h

res 2,
(iy+*),h

res 4,
(iy+%) ,h

res 6,
(iy+%) ,h

set 0,
(iy+%) ,h

set 2,
(iy+%) ,h

set 4,
(iy+%) ,h

set 6,
(iy+*),h

5

rlc
(iy+%),1

rl
(iy+#),1

sla
(iy+%),1

s11
(iy+%),1

bit 0,
(iy+*)

bit 2,
(iy+*)

bit 4,
(iy+*)

bit 6,
(iy+*)

res 0,
(iy+%),1

res 2,
(iy+*),

=

res 4,
(iy+#),1

res 6,
(iy+%),1

set 0,
(iy+*),

=

set 2,
(iy+),1

set 4,
(iy+),1

set 6,
(iy+0),1

6

rlc
(iy+*)

rl
(iy+*)

sla
(iy+*)
s11
(iy+*)

bit 0,
(iy+*)

bit 2,
(iy+*)

bit 4,
(iy+*)

bit 6,
(iy+*)

res 0,
(iy+*)

res 2,
(iy+*)

res 4,
(iy+*)

res 6,
(iy+%)

set 0,
(iy+%)

set 2,
(iy+*)

set 4,
(iy+H)

set 6,
(iy+*)

7

rlc
(iy+*)
rl
(iy+%)
sla
(iy+%)
s11
(iy+%)

bit 0,
(iy+*)

bit 2,
(iy+*)

bit 4,
(iy+%)

bit 6,
(iy+%)

res 0,
(iy+*)

res 2,
(iy+*)

res 4,
(iy+%)

res 6,
(iy+%)

set 0,
(iy+%)

set 2,
(iy+*)

set 4,
(iy+H)

set 6,
(iy+%)

,a
,a
,a

,a

,a
,a
,a
,a
,a
,a
,a

a

43

rrc
(iy+%),b

T
(iy+%),b

sra
(iy+%),b

srl
(iy+%),b

bit 1,
(iy+*)

bit 3,
(iy+*)

bit 5,
(iy+*)

bit 7,
(iy+*)

Tes 1,
(iy+%),b

Tes 3,
(iy+%),b

res 5,
(iy+%),b

res 7,
(iy+%),b

set 1,
(iy+%),b

set 3,
(iy+*),b

set 5,
(iy+),b

set 7,
(iy+) ,b

rrc
(iy+*),c

rr
(iy+*),c

sra
(iy+%) ¢

srl
(iy+%) ¢

bit 1,
(iy+*)

bit 3,
(iy+*)

bit 5,
(iy+%)

bit 7,
(iy+*)

res 1,
(iy+$) ¢

res 3,
(iy+*),c

res 5,
(iy+x),c

res 7,
(iy+%) ¢

set 1,
(iy+%) ¢

set 3,
(iy+%) ¢

set 5,
(iy+%) ¢

set 7,
(iy+*),c

A

rrc
(iy+x),d

rr
(iy+*),d

sra
(iy+%) ,d

srl
(iy+%) ,d

bit 1,
(iy+*)

bit 3,
(iy+*)

bit 5,
(iy+%)

bit 7,
(iy+%)

res 1,
(iy+%),d

res 3,
(iy+x),d

res 5,
(iy+%) ,d

res 7,
(iy+%) ,d

set 1,
(iy+%) ,d

set 3,
(iy+*),d

set 5,
(iy+%) ,d

set 7,
(iy+*),d

B

rrc
(iy+%) ,e

T
(iy+%) ,e

sra
(iy+5) e

srl
(iy+%) e

bit 1,
(iy+*)

bit 3,
(iy+%)

bit 5,
(iy+%)

bit 7,
(iy+*)

res 1,
(iy+*) ,e

res 3,
(iy+%) ,e

res 5,
(iy+%) ,e

res 7,
(iy+%) e

set 1,
(iy+%) e

set 3,
(iy+%) e

set 5,
(iy+) e

set 7,
(iy+%) ,e

rrc
(iy+x),h

T
(iy+%) ,h

sra
(iy+%) ,h

srl
(iy+%) ,h

bit 1,
(iy+*)

bit 3,
(iy+*)

bit 5,
(iy+*)

bit 7,
(iy+*)

res 1,
(iy+*),h

res 3,
(iy+x),h

res 5,
(iy+%) ,h

res 7,
(iy+%) ,h

set 1,
(iy+%) ,h

set 3,
(iy+%) ,h

set 5,
(iy+%),h

set 7,
(iy+%),h

D

rrc
(iy+%),1

T
(iy+%),1

sra
(iy+%),1

srl
(iy+%),1

bit 1,
(iy+*)

bit 3,
(iy+*)

bit 5,
(iy+%)

bit 7,
(iy+6)

res 1,
(iy+%),1

res 3,
(iy+%),1

res 5,
(iy+%),1

res 7,
(iy+%),1

set 1,
(iy+%),1

set 3,
(iy+),1

set 5,
(y+),1

set 7,
(iy+*),1

E

rre
(iy+*)

rr
(iy+*)

sra
(iy+*)
srl

(iy+*)

bit 1,
(iy+*)

bit 3,
(iy+*)

bit 5,
(iy+%)

bit 7,
(iy+%)

res 1,
(iy+*)

res 3,
(iy+*)

res 5,
(iy+*)

res 7,
(iy+*)

set 1,
(iy+%)

set 3,
Giy+)

set 5,
(iy+*)

set 7,
(iy+%)

F

rrc
(iy+x),a

T
(iy+%) ,a

sra
(iy+*),a

srl
(iy+*),a

bit 1,
(iy+*)

bit 3,
(iy+*)

bit 5,
(iy+H)

bit 7,
(iy+%)

res 1,
(iy+$) ,a

res 3,
(iy+x),a

res 5,
(iy+%) ,a

res 7,
(iy+%) ,a

set 1,
(iy+%) ,a

set 3,
(iy+%) ,a

set 5,
(iy+*),a

set 7,
(iy+*),a

RASM

C 780 Opcodes Duration on CPC

This table shows the duration of all z80 opcodes, expressed in number of equivalent NOPs. This is
valid for CPC only. For example, ADD A,(HL) has the same duration as 2 NOPs.

e 1: 8 bits register (A,B,C,D,EH,L)
e rr: 16 bits register (AF,BC,DE,HL,SP)

d: 8 bits data (0..255)
e dd: 16 bits data

b: bit (0..7)
e cond: Condition (CC,Z,M,NC,NZ,P,PO,PE)

Instruction using IY register have exactly the same duration as IX instructions, they are omitted in
the table.

Opcode Duration Opcode Duration Opcode Duration
ADC r,r 1 CP IXL 2 INC (IX+d) 6
ADC A, (HL) 2 CP (IX+d) 3 IND 5
ADC A,n 2 CPD 4 INI 5
ADC HL,rr 4 CPDR 6/ 4 INIR 6 /65
ADC HL,SP 4 CPI 4 INDR 6 /65
ADC A,IXH 2 CPIR 6/ 4 JP dd 3
ADC A,IXL 2 CPL 1 JP cond,dd 3
ADC A, (IX+d) 5 DAA 1 JP (HL) 1
ADD r,r 1 DEC r 1 JP (IX) 2
ADD A, (HL) 2 DEC rr 2 JR d 3
ADD A,d 2 DEC (HL) 3 JR C,d 3/ 2
ADD HL,dd 3 DEC IX 3 JR NC,d 3/ 2
ADD IX,rr 4 DEC IXH 2 JR NZ,d 3/ 2
ADD IX,IX 4 DEC IXL 2 JR Z,d 3/ 2
ADD IX,SP 4 DEC (IX+d) 6 LD r,r 1
ADD A,IXH 2 DI 1 LD r,d 2
ADD A,IXL 2 DJNZ 4 4/ 3 LD A, (rr) 2
ADD A, (IX+d) 5 EI 1 LD r, (HL) 2
AND r 1 EX AF,AF’ 1 LD (rr),A 2
AND d 2 EX DE,HL 1 LD SP,HL 2
AND (HL) 2 EX (SP),HL 6 LD r,IXH 2
AND IXH 2 EX (SP),IX 7 LD r,IXL 2
AND IXL 2 EXX 1 LD SP,IX 3
AND (IX+d) 5 HALT 1 LD rr,dd 3
BIT r 2 IM O 2 LD (HL),d 3
BIT (HL) 3 IM 1 2 LD A,R 3
BIT b, (IX+d) 6 IM 2 2 LD R,A 3
BIT b, (IX+d),r 6 IN A, (d) 3 LD A,I 3
CALL dd 5 IN r, (C) 4 LD I,A 3
CALL cond,dd 5/3 INC r 1 LD IXH,d 3
CCF 1 INC rr 2 LD IXL,d 3
CP r 1 INC (HL) 3 LD A, (dd) 4
CP d 2 INC IX 3 LD (dd),A 4
CP (HL) 2 INC IXH 2 LD IX,dd 4
CP IXH 2 INC IXL 2 LD HL, (dd) 5

44

RASM

Opcode

LD BC, (dd)
LD DE, (dd)
LD (dd),HL
LD r, (IX+d)
LD (dd),rr
LD IX,(dd)
LD (dd),IX
LD (IX+d),r
LD (IX+d),d
LD (dd),SP
LD SP, (dd)
LDD

LDI

LDDR

LDIR

NEG

NOP

OR r

OR d

OR (HL)

OR IXH

OR IXL

OR (IX+d)
0UT (d),A
0uT (C),r
ouT (C),0
0UTD

OUTI

OTDR

0TIR

POP rr

POP IX
PUSH rr
PUSH IX
RES b,r
RES b, (HL)
RES b, (IX+d)

RES b, (IX+d),r

(&)

(0}
N NPEAENOOPR P ONNOOOOOR PP WONNNNMNNNERPRPNNMNNNOOOOOOOOO OO O1O1Oo

Duration

(@)

Opcode

RET

RET cond
RETN

RETI

RL r

RL (HL)

RL (IX+d)

RL (IX+d),r
RLC r

RLC (HL)

RLC (IX+d)
RLC (IX+d),r
RLCA

RLA

RLD

RR r

RR (HL)

RR (IX+d)

RR (IX+d),r
RRA

RRC r

RRC (HL)

RRC (IX+d)
RRC (IX+d),r
RRD
RRCA
RST
SBC A,r
SBC A,d
SBC A,IXH
SBC A,IXL
SBC A, (HL)
SBC A, (IX+d)
SBC HL,rr
SBC HL,SP

i o)

Duration

45

4

w

B ORONNNEFE DR, ONNBNR,NNDNDO R 2NN NN N DD DN

Opcode

SCF
SET
SET
SET
SET
SLA
SLA
SLA
SLA
SLL
SLL
SLL
SLL
SRA
SRA
SRA
SRA
SRL
SRL
SRL
SRL
SUB
SUB
SUB
SUB
SUB
SUB
XO0R
XOR
X0R
X0R
XO0R
XO0R

b,r

b, (HL)
b, (IX+d)
b, (IX+d) ,r
r

(HL)
(IX+d)
(IX+d),T
r

(HL)
(IX+d)
(IX+d),r
r

(HL)
(IX+d)
(IX+d),r
r

(HL)
(IX+d)
(IX+d),T
r

d

(HL)

IXH

IXL
(IX+d)

r

d

(HL)

IXH

IXL
(IX+d)

Duration

[E

NN NNREAONNDNONE NN NN DN NTNTDNNN DD NN DN

RASM

D Licenses

RASM This software (binary and source code) and its documentation are distributed uder the MIX

‘expat’ license.

Copyright @©BERGE Edouard (roudoudou)

Permission is hereby granted, free of charge, to any person obtaining a copy of this software
and associated documentation/source files of RASM, to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software

is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies

or substantial portions of the Software. The Software is provided "as is", without warranty
of any kind, express or implied, including but not limited to the warranties of merchantability,
fitness for a particular purpose and noninfringement. In no event shall the authors or
copyright holders be liable for any claim, damages or other liability, whether in an action

of contract, tort or otherwise, arising from, out of or in connection with the software

or the use or other dealings in the Software.

LZ4 cruncher (sources were modified)

BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
’AS IS’ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

You can contact the author at

- LZ4 homepage : http://www.lzd.org
- LZ4 source repository : https://github.com/1z4/1z4

46

RASM

ZX7 cruncher (sources were modified)

(c) Copyright 2012 by Einar Saukas. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

* The name of its author may not be used to endorse or promote products
derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ’AS IS’ AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY

DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND

ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Exomizer cruncher (sources were modified)

Copyright (c) 2005 Magnus Lind.

This software is provided ’as-is’, without any express or implied warranty.
In no event will the authors be held liable for any damages arising from
the use of this software.

Permission is granted to anyone to use this software, alter it and re-
distribute it freely for any non-commercial, non-profit purpose subject to
the following restrictions:
1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software in a
product, an acknowledgment in the product documentation would be
appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not
be misrepresented as being the original software.
3. This notice may not be removed or altered from any distribution.
4. The names of this software and/or it’s copyright holders may not be
used to endorse or promote products derived from this software without
specific prior written permission.

47

Index
SYMBOLES, 6

ACOS, 16
ALIGN, 11
AMSDOS, 30
AND, 16
APUltra, 27
ASR0, 7
ASIN, 16
ASSERT, 18
ATAN(), 16
Audio, 26

BANK, 29, 32, 34, 35

BANKSET, 33, 34
BREAK, 18
BREAKPOINT, 9

BREAKPOINTS, 33

Breakpoints, 33
BRK, 21, 33
BUILDSNA, 31

Cartridge, 30
Cartridges, 30
CASE, 18
CHARSET, 13
COS(), 16
CPR, 30

DEFAULT, 18
DEFB, 11
DEFTI, 12
DEFM, 11
DEFR, 12
DEFS, 12
DEFW, 12
DSK, 30

ELSE, 18
ENDIF, 18
ENDM, 20
ENDSTRUCT, 23
ENDSWITCH, 18
EQU, 15

Exomizer, 27
FAIL, 17

HI, 21
HI(), 12, 16

48

HOBETA, 35

IF, 18
IFDEF, 18
IFNDEF, 18
IFNOT, 18
IFNUSED, 18
IFUSED, 18
INCBIN, 25
INCLA48, 27
INCLA49, 27
INCLEXO, 27
INCLUDE, 25
INCLZ4, 27
INCZX7, 27

Labels, 21
LET, 34
LIMIT, 11
LIST, 34
LO(), 16
LOW, 21
LZ4, 26
1748, 26
LZ49, 26
LZCLOSE, 26
LZEXO0, 26
LZXT7, 26

MACRO, 20
MAXAM, 7
MEND, 20
MODULES, 22

NOEXPORT, 17

OR, 16
ORG, 10, 21

PAGE, 29
PAGESET, 29
PRINT, 17
PROTECT, 11

REND, 19
REPEAT, 19, 21

REPEAT_COUNTER, 19

RUN, 33

SAVE, 30

RASM

SETCPC, 31
SETCRTC, 31
SETSNA, 31
SIN(), 16
SIZEOF, 24
Snapshots, 30, 31, 33
STOP, 17
STR, 13
STRUCT, 23
SWITCH, 18
Symbols, 33

UNDEF, 18
UNTIL, 19, 21
UZ80, 7

Variables, 15

WAV, 26

WEND, 19

WHILE, 19, 21
WHILE_.COUNTER, 19
WRITE DIRECT, 34

XOR, 16
XPR, 30

ZX, 35

49

	Introduction
	Features

	Usage
	Command line
	Exported file names
	Symbol exports
	Including files
	Dependencies options
	Compatibility options
	Debug options
	More options

	Source code format
	Comments
	Labels
	Z80 Instructions
	IX, IY registers
	Undocumented opcodes syntax
	Shorcuts

	Memory related directives
	ORG Directive
	ALIGN
	LIMIT
	PROTECT

	Data definition
	DB, DEFB, DM, DEFM
	DEFW
	DEFI
	DEFR
	DEFS
	STR
	CHARSET
	$ Operator

	Expressions
	Aliases and Variables
	Constants or Alias
	Variables

	Literal values
	Allowed chars

	Operators
	Operators priorities

	Preprocessor
	Debugging and asserting
	PRINT
	FAIL
	STOP
	NOEXPORT

	Conditionnal code directives
	ASSERT
	IF, IFNOT
	IFDEF, IFNDEF
	UNDEF
	IFUSED, IFNUSED
	SWITCH

	Loops and Macros
	REPEAT
	WHILE, WEND
	Macros

	Labels and modules
	Local labels
	Proximity labels
	Mixing different kinds of labels
	Modules

	Structures
	STRUCT
	SIZEOF
	STRUCT Array

	Duration of a bloc

	Crunch and import directives
	File Import
	INCLUDE
	INCBIN
	Multiple files import
	Audio Files

	Crunching
	Crunched Section
	Crunched Binaries
	SUMMEM
	XORMEM

	Amstrad CPC Specific features
	Bank Management
	BANK Prefix
	PAGE Prefix
	PAGESET Prefix

	AMSDOS headers and DSK files
	AMSDOS Header
	SAVE directive

	Snapshot and Cartridges
	BUILDSNA
	SETCPC
	SETCRTC
	SETSNA
	BANK
	RUN

	Specific Directives for snapshot images
	BANKSET
	BREAKPOINT
	Export option

	CPC+ Colors
	GET_R, GET_G, GET_B
	SET_R, SET_G, SET_B

	Deprecated Directives
	NOCODE
	WRITE DIRECT
	LIST, NOLIST, LET

	ZX Specific features
	HOBETA Directive
	Bank Selection
	BUILDZX Directive

	Options

	Compiling and Embedding
	Building RASM
	Linux
	Windows (Visual Studio)
	Dos/Windows 32 (Watcom)
	MacOS
	MorphOS

	Embedding RASM
	Errors and Symbols

	Syntactic coloration
	Syntax color with VIM

	Z80 Opcodes
	Main Instructions
	Extended instructions (ED)
	Bit instructions (CB)
	IX instructions (DD)
	IX bit instructions (DDCB)
	IY instructions (FD)
	IY bit instructions (FDCB)

	Z80 Opcodes Duration on CPC
	Licenses

